解析sensor_msgs::PointCloud2 ROS点云数据
1.一个仿真的点云数据
header:
seq: 2116
stamp:
secs: 1586919439
nsecs: 448866652
frame_id: "LidarSensor1"
height: 1
width: 3
fields:
-
name: "x"
offset: 0
datatype: 7
count: 1
-
name: "y"
offset: 4
datatype: 7
count: 1
-
name: "z"
offset: 8
datatype: 7
count: 1
is_bigendian: False
point_step: 12
row_step: 36
data: [143, 194, 117, 53, 10, 215, 163, 53, 222, 238, 165, 64, 143, 194, 117, 53, 10, 215, 163, 53, 222, 238, 165, 64, 143, 194, 117, 53, 10, 215, 163, 53, 222, 238, 165, 64]
is_dense: True
PointCloud2的data是序列化后的数据,直接看不到物理意义,可以转到PointCloud处理
#include <sensor_msgs/PointCloud2.h>
#include <sensor_msgs/PointCloud.h>
#include <sensor_msgs/point_cloud_conversion.h>
sensor_msgs::PointCloud clouddata;
sensor_msgs::convertPointCloud2ToPointCloud(msg, clouddata);
sensor_msgs::PointCloud cloud;
cloud.header.stamp = ros::Time::now();
cloud.header.frame_id = "PERCEPTION2020"; //帧id
cloud.points.resize(clouddata.points.size());
cloud.channels.resize(1); //设置增加通道数
cloud.channels[0].name = "intensity"; //增加反射强度信道,并设置其大小,使与点云数量相匹配
cloud.channels[0].values.resize(clouddata.points.size());
for (int i = 0; i < clouddata.points.size(); i++)
{
cloud.points[i].x = clouddata.points[i].x;
cloud.points[i].y = clouddata.points[i].y;
cloud.points[i].z = clouddata.points[i].z;
cloud.channels[0].values[i] = clouddata.channels[0].values[i]; //设置反射强度
}
pub->publish(cloud);
也可以直接用pcl转
pcl::PointCloud<pcl::PointXYZ> cloud;
pcl::fromROSMsg(msg, cloud);
分类:
规划控制 / 路径规划
, slam / 激光SLAM
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 阿里最新开源QwQ-32B,效果媲美deepseek-r1满血版,部署成本又又又降低了!
· 单线程的Redis速度为什么快?
· SQL Server 2025 AI相关能力初探
· AI编程工具终极对决:字节Trae VS Cursor,谁才是开发者新宠?
· 展开说说关于C#中ORM框架的用法!
2020-06-21 C++_关键字explicit