题解-poj3682King Arthur's Birthday Celebration

Problem

poj-3682

题目大意:抛一次硬币有\(p\)的概率得到正面,当有\(n\)次正面时停止,抛第\(i\)次的花费为\(2i-1\),求抛的期望次数和期望花费

Solution

本来做这题就是想巩固一下期望方面的东西,可能有点拓展

第一问比较明显,设\(f_i\)表示抛掷了\(i\)次时的期望天数,依题意有:

\(f_i=p\cdot f_{i-1}+(1-p)\cdot f_i+1\)

解释一下,对于抛一次,有\(p\)的概率正面,只要再抛\(f_{i-1}\)次即可,所以加上\(p\cdot f_{i-1}\),有\(1-p\)的概率反面,则仍要抛\(f_i\)次,所以加上\((1-p)\cdot f_i\),再加上这次抛掷的一次,我们就得到了有\(i\)次正面时天数的期望

上面的式子移项消掉,得到\(f_i=f_{i-1}+\frac 1p\),即\(f_i=\frac ip\)


第二问有点意思,设\(E_i\)表示抛掷了\(i\)次正面时的期望花费,仿照上面的式子写出:

\(E_i=p\cdot E_{i-1}+(1-p)\cdot E_i+2f_i-1\)

式子解释和上面一样,只是抛掷的成本变为了\(2f_i-1\)

同样化简,\(E_i=E_{i-1}+\frac {2i}{p^2}-\frac 1p\),求和可得\(E_i=\frac {(1+n)n}{p^2}-\frac np\)


至于为什么抛掷花费可以用\(2f_i-1\)这种利用期望表示的式子,其实是因为\(2f_i-1\)这个式子为一次函数,我们可以用两种方法证明在外部函数为一次函数的情况下,可以利用期望做自变量得到因变量的期望

同时扩展一下,我们可以证明,仅有一次函数满足这个条件

我们明确一下证明的内容,即若\(x_0\)\(x\)的期望,若\(F(x_0)\)等于\(F(x)\)的期望,则\(F(x)\)一定为一次函数(为了方便表达,设\(F^{'}(x)\)\(F(x)\)的期望)

①证明一次函数可行

由于\(x_0=\sum p_iv_i\),我们将其中\(p_i\)的影响去掉,用一个无穷集合记录,在这个集合中\(v_i:v_j\)的数量比为\(p_i:p_j\),而\(x_0\)则可以表达为这个集合元素的平均数(实际上就是将加权平均数化为了平均数,更便于理解)

\(x_0\)的定义为集合数中的一次方平均数,则在一次函数\(F(x)\)的影响下,\(\frac {\sum F(x)}n=F(\frac {\sum x}n)\)

推广一下,若\(x_0\)为元素的\(k\)次方期望(加权平均值),则仅有\(k\)次函数满足上述性质

②证明仅有一次函数可行

由于\(x_0=\sum p_iv_i\)

则有\(F(x_0)=F(\sum p_iv_i),F^{'}(x)=\sum p_iF(v_i)\)

如果要求\(F(x_0)=F^{'}(x)\),则要求\(F(\sum p_iv_i)=\sum p_iF(v_i)\),满足条件下\(F(pv)=pF(v)\),则\(F(x)\)一定为正比例函数,但考虑到求\(\sum\)时项的数量都是相等的,所以我们可以在正比例函数的基础上加上一个常数,这样在求\(\sum\)后常数之间可以抵消。由此可证\(F(x)\)一定要求为一次函数

Code

#include <cstdio>
int main(){
	int n;double p;
	while(1){
		scanf("%d%lf",&n,&p);if(!n)return 0;
		printf("%.3lf %.3lf\n",n/p,1.0*n*(n+1-p)/(p*p));
	}
}
posted @ 2018-09-11 10:03  oier_hzy  阅读(161)  评论(0编辑  收藏  举报