题解-GXOI/GZOI2019 特技飞行

Problem

loj3085 bzoj不放题面差评

题意概要:给出两条竖直直线,再给出 \(n\) 架飞机的初始航线:一条接通这两条直线的线段,保证航线交点不在两条直线上。现要求安排所有飞机在航线相交处做特技:

  • 擦身而过:两架飞机按原方向线路继续前进,一次得分 \(b\)
  • 对向交换:两架飞机交换线路继续前进,一次得分 \(a\)

另外,给定 \(k\) 个边界与坐标轴成 \(45°\)角 的正方形,若一次特技被至少一个正方形囊括,则总得分加 \(c\)

现要求决策每次相遇做的特技,求最大/最小收益

同时要求决策方案中所有飞机 在两条竖直直线处 按纵坐标的排序 相同

\(n, Q\leq 10^5\)

交点个数 \(\leq 5\times 10^5\)

这题意概要好像和原题面差不多了qwq

Solution

\(\mathrm{GXOI/GZOI2019}\) 的题好毒瘤啊,两道联赛、两道原题、一道麻将题……完全不想打,就这题还有点意思……还偏偏要整个二合一……

交点个数 \(\leq 5\times 10^5\),应该是暗示要暴力求出来:交点一定是右部直线排序的逆序对(左部已经有序),用个 \(set\) 暴力扫就是 \(O(n\log n)\)。就得到了所有交点

\(c\) 的贡献很明显是单独求的,将坐标系旋转 \(45°\) 后就可以扫描线了。所以其实难度在于如何求 \(a,b\) 的贡献

设交点总数为 \(t\),其中有 \(x\) 个点交换航线,\(t-x\) 个点不交换。这部分贡献是 \(ax+b(t-x)=(a-b)x+bt\),所以总得分的最大最小值一定是 \(x\) 取最值时取得,即只需要求最少/多有多少个点交换航线

首先因为要求飞机在起终点的顺序不变,而交换航线不会改变顺序,所有点都交换航线肯定是可行的,即 \(x_{\max}=t\)

再考虑最小值。假如所有点都不换航线(\(x = 0\)),在大部分情况下都不合法,考虑使用最少的交换航线使得最终状态与初始状态一致:可以发现,若按照原航线行进时,飞机状态的变化产生了 \(s_1\rightarrow s_2\rightarrow ...\rightarrow s_m\rightarrow s_1\) 的循环,则可以使用 \(m-1\) 次交换使得方案合法(一次交换可以使得一架且最多一架飞机到达指定位置,使 \(m-1\) 架飞机合法后剩下的那一架飞机也即合法)

那么需要交换的次数为 "\(n-\)循环的个数"

复杂度为 \(O(n\log n+k\log k)\),瓶颈在暴力找交点和扫描线

Code

代码中 get_cross 为暴力找交点,Circle 为找循环,Extra 为扫描线

#include <bits/stdc++.h>
using namespace std;

inline void read(int&x){
	char c11=getchar();x=0;while(!isdigit(c11))c11=getchar();
	while(isdigit(c11))x=x*10+c11-'0',c11=getchar();
}

const double eps = 1e-6;
const int N = 101000, M = 501000;

int l0[N], r0[N];
int n,L,R;

struct pnt {
	double x, y;
	friend inline bool operator < (const pnt&A,const pnt&B) {return A.x < B.x;}
}p[M];

int p0;

pnt crs(int i,int j) {
	double th = (double)abs(l0[i] - l0[j]) / (abs(l0[i] - l0[j]) + abs(r0[i] - r0[j]));
	return (pnt) {L + (R-L) * th, l0[i] + (r0[i] - l0[i]) * th};
}

set <int> c;
set <int> :: iterator itr;
map <int,int> mp;

int get_cross() {
	for(int i=1;i<=n;++i) {
		c.insert(r0[i]);
		mp[r0[i]] = i;
		itr = c.find(r0[i]);
		for(++itr; itr != c.end(); ++itr) {
			int j = mp[*itr];
			p[++p0] = crs(i, j);
		}
	}
	return p0;
}

namespace Circle {
	int b[N], dad[N];
	int find(int x) {return dad[x] ? dad[x] = find(dad[x]) : x;}
	int main() {
		for(int i=1;i<=n;++i) b[i] = r0[i];
		sort(b+1,b+n+1);
		int res = 0;
		for(int i=1,j,p1,p2;i<=n;++i) {
			j = lower_bound(b+1,b+n+1,r0[i])-b;
			if((p1 = find(i)) == (p2 = find(j))) ++res;
			else dad[p1] = p2;
		}
		return p0 - (n - res);
	}
}

namespace Extra {
	double b[M+N+N];
	int Q, tot;
	
	struct LNE {
		double x, y1, y2; int w;
		friend inline bool operator < (const LNE&A,const LNE&B) {return A.x < B.x;}
	}l[N+N];
	
	namespace BIT {
		#define lb(x) (x&(-x))
		int d[M+N+N];
		inline int qry(int x) {
			int res = 0;
			for(int i=x;i;i-=lb(i)) res += d[i];
			return res;
		}
		inline void upd(int l, int r, int w) {
			for(;l<=tot;l+=lb(l)) d[l] += w;
			for(++r;r<=tot;r+=lb(r)) d[r] -= w;
		}
		#undef lb
	}
	
	void input() {
		double x, y;
		for(int i=1;i<=p0;++i) {
			x = p[i].x, y = p[i].y;
			p[i].x = x + y, p[i].y = x - y;
			b[++tot] = p[i].y;
		}
		sort(p+1,p+p0+1);
		int r; read(Q);
		for(int i=1;i<=Q;++i) {
			scanf("%lf%lf",&x,&y), read(r);
			l[i+i-1].x = x + y - r - eps;
			l[i+i-1].y1 = x - r - y - eps;
			l[i+i-1].y2 = x - y + r + eps;
			l[i+i-1].w = 1;
			l[i+i].x = x + y + r + eps;
			l[i+i].y1 = x - y - r - eps;
			l[i+i].y2 = x + r - y + eps;
			l[i+i].w = -1;
			
			b[++tot] = x - y + r + eps;
			b[++tot] = x - y - r - eps;
		}
		Q <<= 1;
		sort(l+1,l+Q+1);
		
		sort(b+1,b+tot+1);
		int tt0 = 0; b[0] = -1e10;
		for(int i=1;i<=tot;++i)
			if(fabs(b[i] - b[i-1]) > eps)
				b[++tt0] = b[i];
		tot = tt0;
		
		for(int i=1;i<=p0;++i) p[i].y = lower_bound(b+1,b+tot+1,p[i].y) - b;
		for(int i=1;i<=Q;++i) {
			l[i].y1 = lower_bound(b+1,b+tot+1,l[i].y1) - b;
			l[i].y2 = lower_bound(b+1,b+tot+1,l[i].y2) - b;
		}
	}
	
	int main() {
		input();
		
		int res = 0;
		for(int i=1,j=1;i<=p0;++i) {
			while(j <= Q and l[j].x <= p[i].x)
				BIT::upd(l[j].y1, l[j].y2, l[j].w), ++j;
			if(BIT::qry(p[i].y)) ++res;
		}
		return res;
	}
}

int main() {
	int A, B, C;
	read(n), read(A), read(B), read(C);
	read(L), read(R);
	for(int i=1;i<=n;++i) read(l0[i]);
	for(int i=1;i<=n;++i) read(r0[i]);
	
	int ans1 = A * get_cross(), ans2 = ans1, exa;
	ans2 += (B - A) * Circle::main();
	exa = C * Extra::main();
	if(ans1 > ans2) swap(ans1, ans2);
	printf("%d %d\n",ans1 + exa, ans2 + exa);
	return 0;
}
posted @ 2019-04-26 23:01  oier_hzy  阅读(350)  评论(0编辑  收藏  举报