题解-hzy loves segment tree I

Problem

题目概要:给定一棵 \(n\) 个节点的树,点有点权,进行 \(m\) 次路径取\(\max\)的操作,最后统一输出点权

\(n\leq 10^5,m\leq 5\times 10^6\)

Thoughts

今天闲来无事想到的题目,然后就出出来了

我的做法复杂度是\(O(n\log n+m)\),想把\(O(m\log m)\)卡掉,于是一开始把 \(m\) 开到了\(10^7\),后来发现由于常数过大,导致需要跑\(7s\) 虽然其他做法都跑不出来,然后就把数据开小到\(5\times 10^6\),本机\(1.5s\)

后来有人利用stl超高速的\(sort\)过了这题,但需要\(O(m)\)的空间,同样可以卡掉 但凭借着与\(m\)无关的空间复杂度,还是可以将其卡掉

Solution

首先这题有个可并堆的\(O(m\log m)\)的做法,并过不去

算了,还是讲我的做法,这是一个预处理\(O(n\log n)\),单次操作\(O(1)\)的做法

首先套路地将路径按照\(lca\)进行拆分,然后将可以利用st表进行区间标记(然后最后再将所有st表里的东西逐层下传)

由于st表是利用两个可重区间将整个区间进行覆盖,需要找到对应的区间端点的位置,在序列上可以直接找下标,但在树上呢……直接找\(k\)祖先!

好了,其实这就是一道st表找lca+长链剖分求\(k\)祖先+st表逆向应用的三合一(其实这些操作之间可以共用许多东西)

Code

#include <bits/stdc++.h>
using namespace std;

inline void read(int&x){
	char c11=getchar();x=0;while(!isdigit(c11))c11=getchar();
	while(isdigit(c11))x=x*10+c11-'0',c11=getchar();
}

inline void cmax(int&A,int B){A=A>B?A:B;}

const int N=100003;
struct Edge{int v,nxt;}a[N+N];
int head[N],n,m,_;

inline void ad(){
	int u,v;read(u),read(v);
	a[++_].v=v,a[_].nxt=head[u],head[u]=_;
	a[++_].v=u,a[_].nxt=head[v],head[v]=_;
}

namespace data{
	typedef long long ll;
	const int p=1e9+7;
	int u0,u1,v0,v1,w0,w1,i;
	inline void reset(){read(u0),read(u1),read(v0),read(v1),read(w0),read(w1);i=0;}
	inline void get(int&u,int&v,int&w){
		++i;if(i==1){u=u1,v=v1,w=w1;return ;}
		u=((ll)i*u1+(ll)(i+1)*u0)%n+1;u0=u1,u1=u;
		v=((ll)i*v1+(ll)(i+1)*v0)%n+1;v0=v1,v1=v;
		w=((ll)i*w1+(ll)(i+1)*w0)%p+1;w0=w1,w1=w;
	}
}

int fa[N],son[N];
int dep[N],len[N],top[N];
int dfs_seq[N+N],dfc;
int in[N],out[N];

void main_dfs(int x,int las){
	dep[x]=dep[fa[x]=las]+1;
	in[x]=++dfc;dfs_seq[dfc]=x;
	for(int i=head[x];i;i=a[i].nxt)
		if(a[i].v!=las){
			main_dfs(a[i].v,x);
			dfs_seq[++dfc]=x;
			if(len[a[i].v]>len[son[x]])
				son[x]=a[i].v;
		}
	out[x]=dfc;
	len[x]=len[son[x]]+1;
}

namespace ST{
	int f[20][N],anc[20][N];
	void main(){
		for(int i=1;i<=n;++i)
			anc[0][i]=fa[i];
		for(int j=1;j<20;++j)
			for(int i=1;i<=n;++i)
				anc[j][i]=anc[j-1][anc[j-1][i]];
	}
	void print(){
		for(int j=19;j;--j)
			for(int i=1;i<=n;++i){
				cmax(f[j-1][i],f[j][i]);
				cmax(f[j-1][anc[j-1][i]],f[j][i]);
			}
		for(int i=1;i<=n;++i)
			printf("%d\n",f[0][i]);
	}
}

namespace lca{
	int st_f[20][N+N],Log[N+N];
	inline int get(int x,int y){
		int l = min(in[x], in[y]), r = max(out[x], out[y]);
		int w = Log[r-l+1];
		int t1=st_f[w][l],t2=st_f[w][r-(1<<w)+1];
		return dep[t1]<dep[t2]?t1:t2;
	}
	void main(){
		Log[0]=-1;
		for(int i=1;i<=dfc;++i)
			st_f[0][i]=dfs_seq[i],Log[i]=Log[i>>1]+1;
		for(int l=1,len=1;len<=dfc;++l,len<<=1)
		for(int i=1;i+len-1<=dfc;++i)
			st_f[l][i]=dep[st_f[l-1][i]]<dep[st_f[l-1][i+len]]?st_f[l-1][i]:st_f[l-1][i+len];
		return ;
	}
}

namespace kth_anc{
	const int ks=5;
	int up[N*ks],down[N*ks];
	int hbit[N];
	int tot_up,tot_down;
	int down_be[N];
	int up_be[N];
	inline int get(int x,int k){
		if(!k)return x;
		int t=hbit[k];
		x=ST::anc[t][x];
		k-=(1<<t)+dep[x]-dep[top[x]];
		x=top[x];
		if(!k)return x;
		if(k>0)return up[up_be[x]+k];
		return down[down_be[x]-k];
	}
	void dfs(int x,int Top){
		top[x]=Top;
		if(son[x])dfs(son[x],Top);
		for(int i=head[x];i;i=a[i].nxt)
			if(a[i].v!=fa[x] and a[i].v!=son[x])
				dfs(a[i].v,a[i].v);
	}
	void main(){
		dfs(1,1);
		for(int i=1;i<=n;++i)
			if(top[i]==i){
				int x=i,t=min(len[x],dep[x]);
				up_be[i]=tot_up;
				while(t--)up[++tot_up]=fa[x],x=fa[x];
				x=i,t=len[x];
				down_be[i]=tot_down;
				while(t--)down[++tot_down]=son[x],x=son[x];
			}
		for(int i=1;i<=n;++i)hbit[i]=-1;
		for(int j=20;~j;--j)
		for(int i=1<<j;i<=n;++i)
			if(-1==hbit[i])
				hbit[i]=j;
	}
}

void solve(int o,int x,int w){
	int dis=dep[x]-dep[o]+1,t=lca::Log[dis];
	cmax(ST::f[t][x],w);
	if(dis==(1<<t))return ;
	x=kth_anc::get(x,dis-(1<<t));
	cmax(ST::f[t][x],w);
}

int main(){
	read(n),read(m);
	for(int i=1;i<=n;++i)read(ST::f[0][i]);
	for(int i=1;i<n;++i)ad();
	main_dfs(1,0);
	ST::main();
	lca::main();
	kth_anc::main();
	data::reset();
	for(int i=1;i<=m;++i){
		int x,y,w,o;
		data::get(x,y,w);
		o=lca::get(x,y);
		solve(o,x,w),solve(o,y,w);
	}
	ST::print();
	return 0;
}
posted @ 2019-01-14 18:15  oier_hzy  阅读(197)  评论(0编辑  收藏  举报