HDU 1002 (高精度加法运算)

A + B ProblemII

Time Limit: 2000/1000 MS(Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 317773    Accepted Submission(s):61748


Problem Description

I have a verysimple problem for you. Given two integers A and B, your job is to calculatethe Sum of A + B.

 

 

Input

The first line ofthe input contains an integer T(1<=T<=20) which means the number of testcases. Then T lines follow, each line consists of two positive integers, A andB. Notice that the integers are very large, that means you should not processthem by using 32-bit integer. You may assume the length of each integer willnot exceed 1000.

 

 

Output

For each testcase, you should output two lines. The first line is "Case #:", #means the number of the test case. The second line is the an equation "A +B = Sum", Sum means the result of A + B. Note there are some spaces intthe equation. Output a blank line between two test cases.

 

 

Sample Input

2

1 2

112233445566778899998877665544332211

 

 

Sample Output

Case 1:

1 + 2 = 3

 

Case 2:

112233445566778899+ 998877665544332211 = 1111111111111111110

 

题意简述

首先输入一个数字T(1 <= T <= 20)代表输入的数据组数,其次下边有T行,每行有2个欲求和的数字,并且每个数字不超过1000位。

 

题意分析

这是一道高精度数字计算的题目,unsigned long long double 是不能满足所需要的数字位数的,所以需要别的方法进行计算。

 

解题思路

1.  首先用2个字符串接受并储存要输入的2个加数;

2.  去掉前导零

3.  按照ASCII的关系,让字符串的每个字符减去字符0,获得数值并且倒置存储在2个数组中;

4.  模拟加法运算,并储存在另一个数组中;

5.  按要求输出结果;

6.  初始化各个数据

 

测试数据补充

0001 1000

0 0

000 0000

9999 1

1 9999

99900 00999

00999 99900

当然还有大位数的极端数据,这些能过基本上就不会WA了。

 

代码总览

#include<stdio.h>
#include<string.h>
#define max(x,y)  ( x>y?x:y )
#define n 1010
int main()
{
	//freopen("in.txt", "r", stdin);
	//freopen("out.txt", "w", stdout);
	char a1[n]={0};
	char b1[n]={0};
	int a2[n]={0}, b2[n]={0};
	int num ,n1,n2,j,digit,k,i,m1,m2;
	scanf("%d", &num);
	for(i = 1; i <=num; i++){
		//n1 = n2 = j = digit = k = m1 = m2 = 0;
		scanf("%s %s",a1,b1);
		n1 = strlen(a1);
		n2 = strlen(b1);
		for(j = 0 ; j < n1; j++){
			if(a1[j] != '0'&& a1[j] != NULL){
				m1 = j;
				break;
			}else if(a1[j] == '0' && j == n1-1){
				m1 = 0;
				n1 = 1;
				break;
			}
		}
		for(j = 0 ; j < n2; j++){
			if(b1[j] != '0' && b1[j] != NULL){
				m2 = j;
				break;
			}else if(b1[j] == '0' && j == n2-1){
				m2 = 0;
				n2 = 1;
				break;
			}
		}
		for(j = n1-1,k = 0;j >=m1 ;j--,k++){
			a2[k] = a1[j] - '0';
		}
		
		for(j = n2-1,k = 0;j >=m2 ;j--,k++){
			b2[k] = b1[j] - '0';
		}
		digit = max(n1-m1,n2-m2);
		int c2[n] = {0};
		for(j = 0; j < digit ; j++){
			c2[j] = a2[j] + b2[j] + c2[j];
			c2[j+1] = c2[j] / 10;
			c2[j] = c2[j] % 10;
		}
		if(c2[digit] == 0) digit--;
		printf("Case %d:\n",i);
		for(j = m1; j<n1;j++){
			printf("%c",a1[j]);
		}
		printf(" + ");
		for(j = m2; j<n2;j++){
			printf("%c",b1[j]);
		}
		printf(" = ");
		for(j = digit; j>= 0; j--) printf("%d",c2[j]);
		if(i != num) {
			printf("\n\n");
		}else{
			printf("\n");
		}
		for(j = 0; j<=digit; j++){
			a2[j] = b2[j] = 0;
		}
	}
	//fclose(stdin);
    //fclose(stdout);
	return 0;
}


 

重难点详解

1.  前导零的去除

       for(j = 0 ; j< n1; j++){

           if(a1[j]!= '0'&& a1[j] != NULL){

              m1 =j;

              break;

           }elseif(a1[j] == '0' && j == n1-1){

              m1 =0;

              n1 =1;

              break;

           }

       }

因为下一步要进行倒置处理,所以不妨从字符串的第一个字符开始遍历,遇到‘0’跳过,并使变量指向下一个字符,直到遍历到第一个不为零的字符,或者是遍历完整个字符串(说明全都是‘0’)。

如字符串0302,遍历到第一个字符‘0’m1 为0,第二个字符不为0,所以m1为1,那么倒置字符串从第1位也就是3开始,这样就过滤了前导零。

当然还有极端情况,就是0000…都为0的情况,这样当遍历完整个字符串后发现都是0,那么就规定m1为0,n1为1,进行下面的操作。

2.  倒置

for(j = n1-1,k = 0;j >=m1 ;j--,k++){

                     a2[k] =a1[j] - '0';

              }

很简单,字符减去字符0储存在一个新的数组中,不过注意下标的关系。我这里是从字符串的最后一位开始取储存在数组的第一位中。

3.  模拟加法运算

digit =max(n1-m1,n2-m2);

        int c2[n] = {0};

        for(j = 0; j < digit ; j++){

               c2[j] = a2[j] + b2[j] + c2[j];

               c2[j+1] = c2[j] / 10;

               c2[j] = c2[j] % 10;

        }

Digit变量是两个数组中位数较大的一个,因为要进行足够次数的加法算。新令一个数组来储存同一位的数字之和。并让下一位等于本位除以10(模拟进位),本位取10的余数。

 


posted @ 2016-08-21 16:07  pengwill  阅读(151)  评论(0编辑  收藏  举报