HDU.1757 A Simple Math Problem (矩阵快速幂)
HDU.1757 A Simple Math Problem (矩阵快速幂)
题意分析
给出一个递推式:
1.x<=9时,f(x) = x,
2.x>9时,f(x) = a0 * f(x-1) + a1 * f(x-2) + a2 * f(x-3) + …… + a9 * f(x-10).
现在想让你求解f(k) % m 的值为多少.
当x<=9时,特判输出x % m.
当x>9是,构造如下矩阵乘法:
f(x) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
---|---|---|---|---|---|---|---|---|---|
f(x-1) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
f(x-2) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
f(x-3) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
f(x-4) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
f(x-5) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
f(x-6) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
f(x-7) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
f(x-8) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
f(x-9) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
等于
a0 | a1 | a2 | a3 | a4 | a5 | a6 | a7 | a8 | a9 |
---|---|---|---|---|---|---|---|---|---|
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
乘
f(x-1) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
---|---|---|---|---|---|---|---|---|---|
f(x-2) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
f(x-3) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
f(x-4) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
f(x-5) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
f(x-6) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
f(x-7) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
f(x-8) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
f(x-9) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
f(x-10) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
如此便可得到最后结果。
代码总览
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <sstream>
#include <set>
#include <map>
#include <queue>
#include <stack>
#include <cmath>
#define INF 0x3f3f3f3f
#define nmax 200
#define MEM(x) memset(x,0,sizeof(x))
using namespace std;
const int Dmax = 11;
int N = 10;
int MOD;
typedef struct{
int matrix[Dmax][Dmax];
void init()//初始化为单位矩阵
{
memset(matrix,0,sizeof(matrix));
for(int i = 0; i<Dmax;++i) matrix[i][i] = 1;
}
}MAT;
MAT ADD(MAT a, MAT b)
{
for(int i = 0; i<N;++i){
for(int j = 0;j<N;++j){
a.matrix[i][j] +=b.matrix[i][j];
a.matrix[i][j] %= MOD;
}
}
return a;
}
MAT MUL(MAT a, MAT b)
{
MAT ans;
for(int i = 0; i<N;++i){
for(int j = 0; j<N;++j){
ans.matrix[i][j] = 0;
for(int k = 0; k<N;++k){
ans.matrix[i][j] += ( (a.matrix[i][k] % MOD) * (b.matrix[k][j] % MOD) ) % MOD;
}
ans.matrix[i][j] %= MOD;
}
}
return ans;
}
MAT POW(MAT a, int t)
{
MAT ans; ans.init();
while(t){
if(t&1) ans = MUL(ans,a);
t>>=1;
a = MUL(a,a);
}
return ans;
}
void OUT(MAT a)
{
for(int i = 0; i<N;++i){
for(int j = 0; j<N;++j){
printf("%5d",a.matrix[i][j]);
}
printf("\n");
}
}
void IN(MAT & a,MAT & temp)
{
memset(a.matrix,0,sizeof(a.matrix));
memset(temp.matrix,0,sizeof(temp.matrix));
for(int i = 0; i<N;++i) a.matrix[i][0] = 9-i;
for(int i = 0; i<N;++i) scanf("%d",&temp.matrix[0][i]);
for(int i = 1; i<N;++i) temp.matrix[i][i-1] = 1;
}
void CAL(MAT a)
{
printf("%d\n",a.matrix[0][0] % MOD);
}
int main()
{
//freopen("in.txt","r",stdin);
int K;
while(scanf("%d%d",&K,&MOD) != EOF){
if(K<=9){
printf("%d\n",K);
continue;
}
MAT init,temp;
IN(init,temp);
temp = POW(temp,K-9);
temp = MUL(temp,init);
CAL(temp);
}
return 0;
}