python面对对象编程----------7:callable(类调用)与context(上下文)

一:callables

  callables使类实例能够像函数一样被调用
  如果类需要一个函数型接口这时用callable,最好继承自abc.Callable,这样有些检查机制并且一看就知道此类的目的是callable对象
如果类需要有‘记忆’功能,使用callable是非常方便的相对于函数而言,callable语法什么的就要复杂多了,这也是其主要的缺点:
    def x(args):
body
转化为callable对象:
class X(collections.abc.callable):
def __call__(self, args):
body
x= X()


  1:计算x^y
 1 import collections.abc                          #注,完全可以不引入cleection.abc,引入是为了能够做一些错误检查
 2     class Power1( collections.abc.Callable ):
 3     def __call__( self, x, n ):
 4         p= 1
 5         for i in range(n):
 6             p *= x
 7         return p
 8 
 9 power= Power1()
10 >>> power( 2, 0 )           #像函数一样调用实例
11 1
12 >>> power( 2, 1 )
13 2
14 >>> power( 2, 2 )
15 4
16 >>> power( 2, 10 )
17 1024
18 
19 # 提升性能:上面是O(n),用递归改进为O(logn)
20 class Power4( abc.Callable ):
21     def __call__( self, x, n ):
22         if n == 0:
23             return 1
24         elif n % 2 == 1:
25             return self.__call__(x, n-1)*x
26         else:
27             t= self.__call__(x, n//2)
28             return t*t
29 
30 pow4= Power4()
31 
32 # 再次提升性能,使用记忆功能【注:可以{(2,4):16,... }
33 class Power5( collections.abc.Callable ):
34     def __init__( self ):
35         self.memo = {}
36     def __call__( self, x, n ):
37         if (x,n) not in self.memo:
38             if n == 0:
39                 self.memo[x,n]= 1
40             elif n % 2 == 1:
41                 self.memo[x,n]= self.__call__(x, n-1) * x
42             elif n % 2 == 0:
43                 t= self.__call__(x, n//2)
44                 self.memo[x,n]= t*t
45             else:
46                 raise Exception("Logic Error")
47         return self.memo[x,n]
48 
49 pow5= Power5()
50 
51 # 再次改进,python库自带了一个记忆装饰器,可以使用这个从而不不用自定义callable对象
52 from functools import lru_cache
53 @lru_cache(None)
54 def pow6( x, n ):
55     if n == 0:
56         return 1
57     elif n % 2 == 1:
58         return pow6(x, n-1)*x
59     else:
60         t= pow6(x, n//2)
61         return t*t
62 # Previous requests are stored in a memoization cache. The requests are
63 # tracked in the cache, and the size is limited. The idea behind an LRU cache is that
64 # the most recently made requests are kept and the least recently made requests are quietly purged.
callable试例1

   2:赌注翻倍:综合运用callables,输家翻倍赌注政策:每输一次后赌注就加倍直到赢了后回归原本赌注

 1 class BettingMartingale( BettingStrategy ):
 2     def __init__( self ):
 3         self._win= 0
 4         self._loss= 0
 5         self.stage= 1
 6     @property
 7     def win(self):
 8         return self._win
 9     @win.setter
10     def win(self, value):
11         self._win = value
12         self.stage= 1
13     @property
14     def loss(self):
15         return self._loss
16     @loss.setter
17     def loss(self, value):
18         self._loss = value
19         self.stage *= 2
20 
21     def __call__( self ):
22         return self.stage
23 
24 >>> bet= BettingMartingale()
25 >>> bet()
26 1
27 >>> bet.win += 1
28 >>> bet()
29 1
30 >>> bet.loss += 1
31 >>> bet()
32 2
33 
34 # property的使用使类的定义显得冗杂,实际上我们只关心setters,所以我们用__setattr__来改进上述版本
35 class BettingMartingale2( BettingStrategy ):
36     def __init__( self ):
37         self.win= 0
38         self.loss= 0
39         self.stage= 1
40     def __setattr__( self, name, value ):
41         if name == 'win':
42             self.stage = 1
43         elif name == 'loss':
44             self.stage *= 2
45         super().__setattr__( name, value )
46     def __call__( self ):
47         return self.stage
callable示例2

 


二:context
  A context is generally used to acquire/release, open/close, and lock/unlock types of operation pairs.
  Most of the examples are file I/O related, and most of the file-like objects in Python are already proper context managers.
  1:一些context
   1:最常见的是用在文件的,with语句创建
   2:decimal context:decimal是一个模块,常用于一些对于精度要求比较严格的计算,其本身运行在一个context中,通过改context可以对全局的计算产生影响
   3:还有一些context,主要都是用于类文件的操作
  2:构造context(第八章会详细讲解构造context)
   context最主要的是有__enter__()与__exit__()方法,分别在with语句开始和结束时调用
   抛出的问题都会以traceback参数传递到__exit__()函数中,应该做相应处理。

  例子:错误处理context:在打开文件时做备份,若处理完文件没出问题就删除备份,若出了问题就使用备份来恢复原文件
 1 import os
 2 class Updating:
 3     def __init__( self, filename ):
 4         self.filename= filename
 5     def __enter__( self ):                  #做文件备份
 6         try:
 7             self.previous= self.filename+" copy"
 8             os.rename( self.filename, self.previous )
 9         except FileNotFoundError:
10             # Never existed, no previous copy
11             self.previous= None
12 
13     def __exit__( self, exc_type, exc_value, traceback ):       #
14         if exc_type is not None:
15             try:
16                 os.rename( self.filename, self.filename+ " error" )
17             except FileNotFoundError:
18                 pass # Never even got created?
19             if self.previous:
20                 os.rename( self.previous, self.filename )       #用备份文件恢复原文件
21 
22 with Updating( "some_file" ):
23     with open( "some_file", "w" ) as target:
24          process( target )

 



posted @ 2016-04-12 15:45  billiepander  阅读(1359)  评论(0编辑  收藏  举报