3.0:pandas【基础操作】

pandas 是基于numpy构件的强大的数据处理模块,其核心的数据结构有两个:Series 与 DataFrame

一:Series

  Series 是一种类似于表的东西,拥有索引(index)与其对应的值(value)

  1)创建Series:

    Sereies方法接收两个参数,第一个与value相关,第二个用来指定索引。而创建的方式有两种:

    一种为用两个list作为参数分别代表value和index的值[index参数不写则默认0开始自增长]

    另一种为dict作为第一参数,若不写第二参数,则其key变成index,value即是value,若有第二参数,则用第二参数元素作为index.[index对应不上的则被抛弃]

    import pandas as pd

 1 obj_1 = pd.Series([1,2,3,4])    #若不指定索引则默认为从零开始的自增长
 2 
 3     --->obj_1
 4       0 1
 5       1 2
 6       2 3
 7       3 4
 8       dtype: int64
 9 
10     obj_2 = pd.Series([1,2,3,4], index=['a','b','c','d'])  #指定索引
11 
12     obj_2
13     --->a 1
14       b 2
15       c 3
16       d 4
17       dtype: int64
创建方法一
 1     sdata = {'Ohio':3500,'Texas':7100,'Oregon':1600,'Utah':500}
 2 
 3     obj_3 = pd.Series(sdata)
 4 
 5     obj_3
 6     --->Ohio 3500
 7       Oregon 1600
 8       Texas 7100
 9       Utah 500
10       dtype: int64
11 
12     
13 
14     states = ['California','Ohio','Texas']
15 
16     obj_4 = pd.Series(sdata,index=states)
17 
18     obj_4
19     --->California NaN
20       Ohio 3500
21       Texas 7100                    #由于states列表并没有Oregen与Utah,故无法对应起来
22       dtype: float64
创建方法二

 

  2) 索引

    obj_1.values     #调出所有元素值
    --->array([1, 2, 3, 4], dtype=int64)

    obj_1.index     #调出索引值
    --->Int64Index([0, 1, 2, 3], dtype='int64')

    #改变index值

    obj_4.index = ['bob','steve','jeff']    #注:若要改变index,数量必须与原本的数量相同,不能少也不能多

    obj_4
  
      bob NaN
      steve 3500
      jeff 7100
      dtype: float64

    obj_2['a']      #利用索引进行取值
    --->1

    obj_2[['c','b','a']]        #可以用索引一次取多个值,并且按其给定的顺序输出
    --->c 3
      b 2
      a 1
      dtype: int64

    'b' in obj_2      #检验索引是否存在
    --->True

二:DataFrame

  一种表格型的数据结构,每列可以是不同的数值类型,且它既有行索引,还有列索引,并且他们是平衡的

  1)创建DataFrame

    DataFram(data[,columns = ... , index = ...])

    注:若data为字典型数据,则keys自动变成columns,若data仅是列表类,columns与index都是默认0开始自增长的数

    

 1 data=[['ohio','nevada','nevada'],[2000,1000,1000],[1.5,1.7,3.6]]
 2 
 3     frame_1 = pd.DataFrame(data)
 4 
 5     frame_1
 6     0 1 2
 7       0 ohio nevada nevada
 8       1 2000 1000 1000
 9       2 1.5 1.7 3.6
10 
11     frame_2 = pd.DataFrame(data,columns=['first','second','third'])
12 
13     frame_2
14      first    second   third                   #注意此处结果与使用字典时比较,这里一个list定义了一行,而字典的是一列
15     0 ohio   nevada  nevada
16     1 2000 1000    1000
17     2 1.5    1.7       3.6    
18 
19     frame_2 = pd.DataFrame(data,columns=['first','second','third'],index=['one','two','three'])
20 
21     frame_2
22          first     second    third
23     one   ohio    nevada   nevada
24     two   2000  1000      1000
25     three 1.5     1.7         3.6
创建方法一
 1             data2 = {'states':['ohio','nevada','nevada'],'year':[2000,1000,1000],'pop':[1.5,1.7,3.6]}
 2 
 3     frame_4=pd.DataFrame(data2)
 4 
 5     frame_4
 6       pop states year
 7     0 1.5 ohio 2000
 8     1 1.7 nevada 1000
 9     2 3.6 nevada 1000
10 
11     frame_5=pd.DataFrame(data2,index=['one','two','three'])
12 
13     frame_5
14       pop states year
15     one 1.5 ohio 2000
16     two 1.7 nevada 1000
17     three 3.6 nevada 1000
18 
19             
创建方法二

   2)索引

    同Series一样可以通过values与index属性查看这两个值

 1 In [62]: frame_4
 2 Out[62]:
 3    pop     states      year
 4 0  1.2       ohio      2000
 5 1  2.1  new state  new year
 6 2  3.6     nevada      1000
 7 
 8 In [63]: frame_4.index
 9 Out[63]: Int64Index([0, 1, 2], dtype='int64')
10 
11 In [64]: frame_4.index.name
12 
13 In [65]: frame_4.index
14 Out[65]: Int64Index([0, 1, 2], dtype='int64')
15 
16 In [66]: frame_4.values
17 Out[66]:
18 array([[1.2, 'ohio', 2000L],
19        [2.1, 'new state', 'new year'],
20        [3.6, 'nevada', 1000L]], dtype=object)
index/values属性

 

    通过对column的索引可以获取以Series的形式返回一列

 1 In [38]: frame_4
 2 Out[38]:
 3    pop  states  year
 4 0  1.5    ohio  2000
 5 1  1.7  nevada  1000
 6 2  3.6  nevada  1000
 7 
 8 In [39]: frame_4['pop']
 9 Out[39]:
10 0    1.5
11 1    1.7
12 2    3.6
13 Name: pop, dtype: float64

    通过索引字段ix可以以Series形式返回一行的内容【实际上ix关键字可以实现两个方向上的选取,其接收两个参数,第一个取行,第二个取列,返回并集】

1 In [40]: frame_4.ix[1]
2 Out[40]:
3 pop          1.7
4 states    nevada
5 year        1000
6 Name: 1, dtype: object

 In [8]: frame_4.ix[1,:1]
 Out[8]:
 pop 1.7
 Name: 1, dtype: object

  3)赋值

    列赋值

1 In [41]: frame_4['pop']=2.0
2 
3 In [42]: frame_4
4 Out[42]:
5    pop  states  year
6 0    2    ohio  2000
7 1    2  nevada  1000
8 2    2  nevada  1000

    行赋值

1 In [44]: frame_4
2 Out[44]:
3      pop  states   year
4 0      2    ohio   2000
5 1  hello   hello  hello
6 2      2  nevada   1000

    通过Series进行赋值

 1 In [45]: val = pd.Series([1.2,2.0,3.6],index=[0,1,2])
 2 
 3 In [46]: frame_4['pop']=val
 4 
 5 In [47]: frame_4
 6 Out[47]:
 7    pop  states   year
 8 0  1.2    ohio   2000
 9 1  2.0   hello  hello
10 2  3.6  nevada   1000
 1 In [48]: val_2 = pd.Series([2.1,'new state','new year'],index=['pop','states','y
 2 ear'])
 3 In [49]: frame_4.ix[1]=val_2
 4 
 5 In [50]: frame_4
 6 Out[50]:
 7    pop     states      year
 8 0  1.2       ohio      2000
 9 1  2.1  new state  new year
10 2  3.6     nevada      1000

    增与删

 1 In [52]: frame_4['stars']=['one','two','five']     #没有则直接新建
 2 
 3 In [53]: frame_4
 4 Out[53]:
 5    pop     states      year stars
 6 0  1.2       ohio      2000   one
 7 1  2.1  new state  new year   two
 8 2  3.6     nevada      1000  five
 9 
10 In [54]: del frame_4['stars']
11 
12 In [55]: frame_4
13 Out[55]:
14    pop     states      year
15 0  1.2       ohio      2000
16 1  2.1  new state  new year
17 2  3.6     nevada      1000

  4)转置:.T          [只是返回一个转置的副本,本身并不转置]

 1 In [56]: frame_4
 2 Out[56]:
 3    pop     states      year
 4 0  1.2       ohio      2000
 5 1  2.1  new state  new year
 6 2  3.6     nevada      1000
 7 
 8 In [57]: frame_4.T
 9 Out[57]:
10            0          1       2
11 pop      1.2        2.1     3.6
12 states  ohio  new state  nevada
13 year    2000   new year    1000
.T

 

posted @ 2015-12-12 14:46  billiepander  阅读(513)  评论(0编辑  收藏  举报