2.elasticsearch中的mapping

mapping 顾名思义,代表了映射关系。是文档中字段和数据类型的映射关系

为什么要了解mapping

虽然elasticsearch中已尽有的动态mapping(Dynamic Mapping),而且新增字段默认也会添加新的mapping,但是毕竟是机器,有时会推算的不对,比如地理位置信息,特殊格式化的日期类型等。这时,如果需要es提供排序、聚合等查询功能,就不能满足我们的需求。

什么是mapping

  • 通过手动设置mapping,我们可以
    • 定义文档里字段的数据类型
    • 定义字段的名称
    • 定义对应字段的是否索引
    • 定义对应字段的分词方式
  • mapping会把JSON文档文档映射成Lucene所需要的扁平格式
  • 一个mapping属于一个索引的type
    • 每个文档都属于一个Type
    • 一个type又一个mapping定义
    • 7.0开始,不需要在mapping定义中指定type信息,因为默认每个索引只有一个type叫"_doc"

查询mapping

#GET 索引名/_mapping GET mapping_test/_mapping

设置mapping

PUT users { "mappings" : { "properties" : { "firstName" : { "type" : "text",//text类型全文搜索 "fields" : { "keyword" : { "type" : "keyword",//keyword支持聚合查询 "ignore_above" : 256 } } }, "lastName" : { "type" : "keyword", "null_value": "NULL"//支持字段为null,只有keyword类型支持 }, "mobile" : { "type" : "text", "index": false//此字段不被索引 }, "address":{ "type":"text", "index_options":"offsets"//控制倒排索引记录的内容。offsets最多,记录四个 } } } }

Dynamic Mapping

什么是动态mapping

在写入文档时,如果索引不存在,会自动创建索引,字段类型的自动识别如下:

JSON类型 Elastic search类型
字符串 1、匹配日期格式,设置成Date 2、配置数子设置为float或者long,该选项默认关闭3、设置为text,并且增加keyword字段,超过256位 不分词
布尔值 boolean
浮点数 float
整数 long
对象 object
数组 由第一个非空数值的类型做决定
空值 忽略
PUT dynamic_mapping_test/_mapping { "dynamic": false } PUT dynamic_mapping_test/_mapping { "dynamic": strict }
  • dynamic属性默认为true,新增字段时会自动创建mapping

  • dynamic属性被设置为false时,新增字段不会创建mapping,但是数据会存储,无法根据字段条件查询,但是该字段会会被match_all查询处理

  • dynamic属性被设置为strict时,数据写入直接出错

es中字段对应的数据类型

  • 简单类型
    • text/keyword,对应json中的String,一般会设置字段为text,然后新建个keyword子字段,设置为keyword类型
      • text类型被用来索引长文本,在建立索引前会将这些文本进行分词,转化为词的组合,建立索引。允许es来检索这些词语。text类型不能用来排序和聚合。
      • Keyword类型不需要进行分词,可以被用来检索过滤、排序和聚合。keyword 类型字段只能用本身来进行检索
    • date
    • long, integer, short, byte, double, float
    • boolean
    • IPv4&IPv6
  • 复杂类型-对象和嵌套对象
    • 对象类型/嵌套类型(n)
  • 特殊类型
    • geo_point&geo_shape/percolator

如何设置自定义mapping

常见的属性

  • index 控制当前字段是否被索引,默认为true,如果设置成false,该字段不可被搜索
  • index_options 控制倒排索引记录的内容
    • docs 记录doc id
    • freqs 记录doc id 和term frequencies
    • positions 记录doc id/term frequencies/term position
    • offsets 记录doc id/term frequencies/term position/character offects
  • null_value 需要对字段为null值实现搜索
    • 只有keyword类型支持设定为null_value
  • copy_to
    • _all在7+版本中被copy_t所替代
    • 将字段内容拷贝到目标字段,查询时可以用目标字段作为查询条件,但是不会出现_source中
  • fields
    • 在字段下新增一个字段,可以自定义类型,使用不同的analyzer
    • 可以用来实现以拼音方式搜索中文字段
  • analyzer 分词器
    • standard 默认分词器,按词切分,小写处理
    • simple 按照非字母切分(符号被过滤),小写处理
    • stop 小写处理,停用词过滤(the、a、is)
    • whitespace 按照空格切分,不转小写
    • keyword 不分词,直接将输入当作输出
    • patter 正则表达式,默认\W+(非字符分隔)
    • language 提供了30多种常见语言的分词器(english、german)
    • 中文分词 icu_analyzer、ik、thulac

什么是分词器

分词器分为三部分,分别担任不同的工作

  • character filters 对文本进行预处理,如去除html标签、字符串替换、正则匹配替换
  • tokenizer 将文本按照一定规则,切分为词
  • token filter 将tokenizer切分的词进行增加、修改、删除操作(添加近义词,复数改单数,小写)

设置自定义的分词器

可以将分词器的三个组成部分,自己搭配,实现自定义,也可以用java实现tokenizer插件

{ "tokenizer":"keyword", "char_filter":["html_strip"], "filter": ["stop","snowball"] } { "tokenizer":"standard", "char_filter": [ { "type" : "mapping", "mappings" : [ ":) => happy", ":( => sad"] } ], "filter": ["stop","snowball"] } #自定分词器,并且让firstName字段使用自定义分词器 PUT users { "settings": { "analysis": { "analyzer": { "my_custom_analyzer": { "type": "custom", "char_filter": [ "emoticons" ], "tokenizer": "punctuation", "filter": [ "lowercase", "english_stop" ] } }, "tokenizer": { "punctuation": { "type": "pattern", "pattern": "[.,!?]" } }, "char_filter": { "emoticons": { "type": "mapping", "mappings": [ ":) => _happy_", ":( => _sad_" ] } }, "filter": { "english_stop": { "type": "stop", "stopwords": "_english_" } } } }, "mappings" : { "properties" : { "firstName" : { "type" : "text", "analyzer": "my_custom_analyzer", "fields": { "keyword":{ "type":"keyword", "ignore_above":256 } } }, "lastName" : { "type" : "keyword", "null_value": "NULL" }, "mobile" : { "type" : "text", "index": false }, "address":{ "type":"text", "index_options":"offsets" } } } }

设置索引模版和动态模版

比如索引是日志时,每天增加一个索引,那么设置索引模版可以自动按照模版生成索引mapping,设置分片。

index template

  • 帮助你设定mapping和setting,并按照一定的规则,自动匹配到新创建的索引之上
  • 模版仅在一个索引创建时产生作用,修改模版不会影响已创建的索引
  • 可以设定多个索引模版,这些设置会被“merge”在一起
  • 可以指定“order”的数值,控制“merging”的过程
PUT _template/template_default { "index_patterns": ["*"], "order" : 0, "version": 1, "settings": { "number_of_shards": 1, "number_of_replicas":1 } } PUT /_template/template_test { "index_patterns" : ["test*"], "order" : 1, "settings" : { "number_of_shards": 1, "number_of_replicas" : 2 }, "mappings" : { "date_detection": false,//匹配字符串转日期功能 "numeric_detection": true//匹配字符串转数值功能 } } #获取template GET /_template/temp*

当一个索引被创建时

  1. 应用elasticsearch默认的settings和mappings
  2. 应用order数值低的index template中的设定
  3. 应用order数值高的,之前的设定会被覆盖
  4. 应用创建索引时用户指定的setting和mappings,覆盖之前模版中的设定

dynamic template(感觉用到的不多)

  • 根据elasticsearch识别的数据类型,结合字段名称,对一个索引来动态设定字段类型,比如
    • 所有的字符串类型都设置成keyword
    • is开头的字段都设置成boolean
    • long开头的都设置成long类型
PUT my_index { "mappings": { "dynamic_templates": [ { "strings_as_boolean": { "match_mapping_type": "string", "match":"is*", "mapping": { "type": "boolean" } } }, { "strings_as_keywords": { "match_mapping_type": "string", "mapping": { "type": "keyword" } } } ] } }

__EOF__

本文作者赛博朋克V
本文链接https://www.cnblogs.com/pengliblogs/p/17946589.html
关于博主:评论和私信会在第一时间回复。或者直接私信我。
版权声明:本博客所有文章除特别声明外,均采用 BY-NC-SA 许可协议。转载请注明出处!
声援博主:如果您觉得文章对您有帮助,可以点击文章右下角推荐一下。您的鼓励是博主的最大动力!
posted @   赛博朋克V  阅读(103)  评论(0编辑  收藏  举报
相关博文:
阅读排行:
· 震惊!C++程序真的从main开始吗?99%的程序员都答错了
· 【硬核科普】Trae如何「偷看」你的代码?零基础破解AI编程运行原理
· 单元测试从入门到精通
· 上周热点回顾(3.3-3.9)
· winform 绘制太阳,地球,月球 运作规律
点击右上角即可分享
微信分享提示