为什么通过clear_refs可以使进程触发缺页?

平台

ARM64
Linux 6.10

作者

pengdonglin137@163.com

背景

最近在学习Linux的缺页异常时突然奇想,在不进行内存换出的情况下,如何让进程再次触发缺页?

基于对ARMv8的理解,它的MMU的页表项中有个AF位,当AF为0时,当访问到对应的虚拟页时,会触发缺页。

image

image

image

如果AF位为0,当访问到对应的虚拟页时,会触发MMU的Access flags fault。然后软件需要将这个AF位置1,之后再次访问时就不会触发这个异常了,而Linux中会使用下面的接口来清除和设置AF位:

// 清除
pmdp_test_and_clear_young
ptep_test_and_clear_young

// 设置
pte_mkyoung

ptep_test_and_clear_young为例:

static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
					    unsigned long address,
					    pte_t *ptep)
{
	pte_t pte = ptep_get(ptep);
	int r = 1;
	if (!pte_young(pte))
		r = 0;
	else
		set_pte_at(vma->vm_mm, address, ptep, pte_mkold(pte));
	return r;
}

#define pte_young(pte)		(!!(pte_val(pte) & PTE_AF))

static inline pte_t pte_mkold(pte_t pte)
{
	return clear_pte_bit(pte, __pgprot(PTE_AF));
}

这个接口用于清除PTE页表项的AF位,当再次访问时,会在缺页处理中设置AF位:

static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
{
	pte_t entry;

	if (unlikely(pmd_none(*vmf->pmd))) {
		/*
		 * Leave __pte_alloc() until later: because vm_ops->fault may
		 * want to allocate huge page, and if we expose page table
		 * for an instant, it will be difficult to retract from
		 * concurrent faults and from rmap lookups.
		 */
		vmf->pte = NULL;
		vmf->flags &= ~FAULT_FLAG_ORIG_PTE_VALID;
	} else {
		/*
		 * A regular pmd is established and it can't morph into a huge
		 * pmd by anon khugepaged, since that takes mmap_lock in write
		 * mode; but shmem or file collapse to THP could still morph
		 * it into a huge pmd: just retry later if so.
		 */
		vmf->pte = pte_offset_map_nolock(vmf->vma->vm_mm, vmf->pmd,
						 vmf->address, &vmf->ptl);
		if (unlikely(!vmf->pte))
			return 0;
		vmf->orig_pte = ptep_get_lockless(vmf->pte);
		vmf->flags |= FAULT_FLAG_ORIG_PTE_VALID;

		if (pte_none(vmf->orig_pte)) {
			pte_unmap(vmf->pte);
			vmf->pte = NULL;
		}
	}

	// 如果还没有映射物理页,其中在填充页表的时候会设置AF位,可以参考vm_get_page_prot
	if (!vmf->pte)
		return do_pte_missing(vmf);

	// 如果已经被交换出去
	if (!pte_present(vmf->orig_pte))
		return do_swap_page(vmf);

	// 用于执行NUMA平衡,实现内存迁移。它会周期地把部分虚拟页对应PTE设置位PROT_NONE,读和写都会触发异常
	// 然后在处理缺页的时候处理内存迁移
	if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
		return do_numa_page(vmf);

	spin_lock(vmf->ptl);
	entry = vmf->orig_pte;
	// 通过其他路径已经设置了页表项
	if (unlikely(!pte_same(ptep_get(vmf->pte), entry))) {
		update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
		goto unlock;
	}
	if (vmf->flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
		if (!pte_write(entry)) // 写时复制
			return do_wp_page(vmf);
		else if (likely(vmf->flags & FAULT_FLAG_WRITE))
			entry = pte_mkdirty(entry);
	}

	// 对于AF位触发的缺页,上面的条件不会满足,会走这里,设置AF位
	entry = pte_mkyoung(entry);
	if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
				vmf->flags & FAULT_FLAG_WRITE)) {
		update_mmu_cache_range(vmf, vmf->vma, vmf->address,
				vmf->pte, 1);
	} else {
		/* Skip spurious TLB flush for retried page fault */
		if (vmf->flags & FAULT_FLAG_TRIED)
			goto unlock;
		/*
		 * This is needed only for protection faults but the arch code
		 * is not yet telling us if this is a protection fault or not.
		 * This still avoids useless tlb flushes for .text page faults
		 * with threads.
		 */
		if (vmf->flags & FAULT_FLAG_WRITE)
			flush_tlb_fix_spurious_fault(vmf->vma, vmf->address,
						     vmf->pte);
	}
unlock:
	pte_unmap_unlock(vmf->pte, vmf->ptl);
	return 0;
}

而clear_refs的实现就利用了这一点,这里是关于这个节点的用法:/proc/pid/clear_refs

# 清除进程所有虚拟区域的 Access/PG_reference
# DEFINE: CLEAR_REFS_ALL 1
echo 1 > /proc/PID/clear_refs

# 清除进程所有匿名映射区域的 Access/PG_reference
# DEFINE: CLEAR_REFS_ANON 2
echo 2 > /proc/PID/clear_refs

# 清除进程所有文件映射区域的 Access/PG_reference
# DEFINE: CLEAR_REFS_MAPPED 3
echo 3 > /proc/PID/clear_refs

# 清除进程所有软脏页标志
# DEFINE: CLEAR_REFS_SOFT_DIRTY 4
echo 4 > /proc/PID/clear_refs

# 重置进程的 Hiwater_rss
# DEFINE: CLEAR_REFS_MM_HIWATER_RSS 5
echo 5 > /proc/PID/clear_refs

实现

当向clear_refs写入数值时,函数clear_refs_write被回调,这个函数中会调用:

walk_page_range(mm, 0, -1, &clear_refs_walk_ops, &cp);

其中walk_page_range负责遍历页表,在遍历的过程中会回调clear_refs_walk_ops中的函数:

static const struct mm_walk_ops clear_refs_walk_ops = {
	.pmd_entry		= clear_refs_pte_range,
	.test_walk		= clear_refs_test_walk,
	.walk_lock		= PGWALK_WRLOCK,
};
  • test_walk回调:用于判断是否跳过当前vma,返回0表示需要遍历当前vma,返回-1表示结束遍历,返回1表示跳过当前vma
  • pmd_entry回调:处理一个非空的PMD entry

先看一下如何判断是否遍历当前vma的实现:

static int clear_refs_test_walk(unsigned long start, unsigned long end,
				struct mm_walk *walk)
{
	struct clear_refs_private *cp = walk->private;
	struct vm_area_struct *vma = walk->vma;

	// 不是通过struct page来映射的
	if (vma->vm_flags & VM_PFNMAP)
		return 1;

	/*
	 * Writing 1 to /proc/pid/clear_refs affects all pages.
	 * Writing 2 to /proc/pid/clear_refs only affects anonymous pages.
	 * Writing 3 to /proc/pid/clear_refs only affects file mapped pages.
	 * Writing 4 to /proc/pid/clear_refs affects all pages.
	 */
	// 如果要清除的是匿名页,但是当前vma映射到的是文件,那么跳过当前vma
	if (cp->type == CLEAR_REFS_ANON && vma->vm_file)
		return 1;
	// 如果要清除的是文件页,但是当前vma是匿名的,那么跳过当前vma
	if (cp->type == CLEAR_REFS_MAPPED && !vma->vm_file)
		return 1;

	// 处理当前vma
	return 0;
}

接下来看看如何清除页表项的AF位:

static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr,
				unsigned long end, struct mm_walk *walk)
{
	struct clear_refs_private *cp = walk->private;
	struct vm_area_struct *vma = walk->vma;
	pte_t *pte, ptent;
	spinlock_t *ptl;
	struct folio *folio;

	ptl = pmd_trans_huge_lock(pmd, vma);
	if (ptl) {  // 如果是PMD映射的巨型页
		if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
			clear_soft_dirty_pmd(vma, addr, pmd);
			goto out;
		}

		if (!pmd_present(*pmd))  // 如果被swap出去了,跳过
			goto out;

		folio = pmd_folio(*pmd);

		/* Clear accessed and referenced bits. */
		pmdp_test_and_clear_young(vma, addr, pmd);  // 清除PMD页表项的AF位
		folio_test_clear_young(folio);
		folio_clear_referenced(folio);
out:
		spin_unlock(ptl);
		return 0;
	}

	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	if (!pte) {
		walk->action = ACTION_AGAIN;
		return 0;
	}
	for (; addr != end; pte++, addr += PAGE_SIZE) {
		ptent = ptep_get(pte);

		if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
			clear_soft_dirty(vma, addr, pte);
			continue;
		}

		if (!pte_present(ptent))  // 如果被swap出去了,跳过
			continue;

		folio = vm_normal_folio(vma, addr, ptent);
		if (!folio)
			continue;

		/* Clear accessed and referenced bits. */
		ptep_test_and_clear_young(vma, addr, pte);  // 清除PTE页表项的AF位
		folio_test_clear_young(folio);
		folio_clear_referenced(folio);
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();
	return 0;
}

实验

下面通过实验来观察和学习:

思路是:

  • 进程通过malloc申请一块匿名内存,然后通过memset或者mlock等接口事先分配好物理页。接着反复去访问这段内存
  • 通过向clear_refs写入2来清除匿名页的AF位
  • 通过各种工具来观察缺页

测试程序

leak2.c

#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include <stdlib.h>
#include <sys/mman.h>

char *addr;

// 16MB
int size = 0x1000*0x1000;

int func3(void)
{
        static int i = 0;
        char *access;
        int ret = 0;

        printf("%s enter.\n", __func__);

        access = addr + 0x1000*i;
        printf("p: %d, s: %p, e: %p, %s access addr: %p\n",
                getpid(), addr, addr + size,
                i&0x1 ? "write" : "read",
                access);

        if (i & 0x1)
                *access = 0x5a;  // 触发写访问缺页
        else
                ret = *access;   // 触发读访问缺页

        sleep(1);

        i++;
        if (i >= 0x1000)
                i = 0;

        return ret;
}

int func2(void)
{
        printf("%s enter.\n", __func__);
        return func3();
}

int  func1(void)
{
        printf("%s enter.\n", __func__);
        return func2();
}

int main(void)
{
        int ret;

        printf("%s enter.\n", __func__);

        addr = malloc(size);
        if (!addr) {
                printf("alloc buf failed\n");
                return -1;
        }

        /*
          为了测试方便,使更容易观察到缺页,不使用THP,即不使用透明巨型页映射。
          需要注意的是,不能把将THP的策略配置为always,否则总是会按照2MB的巨型页去映射
          root@arm64:/sys/kernel/mm/transparent_hugepage# cat enabled
          always [madvise] never
         */
        ret = madvise((void *)((unsigned long)addr & ~(0x1000 - 1)), size, MADV_NOHUGEPAGE);
        if (ret < 0) {
                perror("set nohugepage failed");
                return -1;
        }

        // 这个区域如果发生缺页的话,一次只映射一个page,由于下面用了mlockall,这步可以不做
        ret = madvise((void *)((unsigned long)addr & ~(0x1000 - 1)), size, MADV_RANDOM);
        if (ret < 0) {
                perror("set random failed\n");
                return -1;
        }

        // 预先给这片区域映射物理页
        // memset(addr, 0, size);
        if (mlockall(MCL_CURRENT | MCL_FUTURE) < 0) {
                perror("mlockall failed");
                return -1;
        }

        while (1)
                func1();

        return 0;
}

开始运行后,可以看到如下日志:

func1 enter.
func2 enter.
func3 enter.
p: 2058, s: 0xffff9a600010, e: 0xffff9b600010,  write access addr: 0xffff9a611010
func1 enter.
func2 enter.
func3 enter.
p: 2058, s: 0xffff9a600010, e: 0xffff9b600010,   read access addr: 0xffff9a612010

查看映射

root@arm64:/sys/kernel/mm/transparent_hugepage# pmap -x `pidof leak2`
2058:   ./leak2
Address           Kbytes     RSS   Dirty Mode  Mapping
0000aaaab9690000       4       4       0 r-x-- leak2
0000aaaab96a1000       4       4       4 r---- leak2
0000aaaab96a2000       4       4       4 rw--- leak2
0000aaaae9238000     132     132     132 rw---   [ anon ]
> 0000ffff9a600000   16384   16384   16384 rw---   [ anon ]
0000ffff9b600000       4       4       4 rw---   [ anon ]
0000ffff9b796000    1388    1388       0 r-x-- libc-2.31.so
0000ffff9b8f1000      60       0       0 ----- libc-2.31.so
0000ffff9b900000      16      16      16 r---- libc-2.31.so
0000ffff9b904000       8       8       8 rw--- libc-2.31.so
0000ffff9b906000      12      12      12 rw---   [ anon ]
0000ffff9b909000     132     132       0 r-x-- ld-2.31.so
0000ffff9b92b000       8       8       8 rw---   [ anon ]
0000ffff9b937000       8       0       0 r----   [ anon ]
0000ffff9b939000       4       4       0 r-x--   [ anon ]
0000ffff9b93a000       4       4       4 r---- ld-2.31.so
0000ffff9b93b000       8       8       8 rw--- ld-2.31.so
0000ffffd0312000     132     132     132 rw---   [ stack ]
---------------- ------- ------- -------
total kB           18312   18244   16716

使用crash的vtop命令确认一下是否为按4KB的物理页映射的:

crash> vtop ffff9a600000
VIRTUAL     PHYSICAL
ffff9a600000  138ae7000

PAGE DIRECTORY: ffff0000d719b000
   PGD: ffff0000d719bff8 => 800000116e70003
   PUD: ffff0000d6e70ff0 => 800000116f6d003
   PMD: ffff0000d6f6d698 => 800000116b4d003
   PTE: ffff0000d6b4d000 => e8000138ae7f43
  PAGE: 138ae7000

     PTE        PHYSICAL   FLAGS
e8000138ae7f43  138ae7000  (VALID|USER|SHARED|AF|NG|PXN|UXN|DIRTY)

      VMA           START       END     FLAGS FILE
ffff0000d739d768 ffff9a600000 ffff9b600000 40112073

      PAGE        PHYSICAL      MAPPING       INDEX CNT FLAGS
fffffdffc3e2b9c0 138ae7000 ffff0000cc765cc9 ffff9a600  1 bfffe00001d0028 uptodate,lru,mappedtodisk,swapbacked,unevictable,mlocked

上面PTE这行就是虚拟地址ffff9a600000对用的PTE页表项的内容的解析。

上面指示的区域就是malloc申请的16MB的匿名页内存区域,RSS大小也是16MB,意味着这块虚拟内存已经全部映射到了物理页。

缺页次数

top - 14:59:55 up 28 min,  4 users,  load average: 0.08, 0.33, 0.50
Tasks:   1 total,   0 running,   1 sleeping,   0 stopped,   0 zombie
%Cpu(s):  0.0 us,  2.3 sy,  0.0 ni, 97.7 id,  0.0 wa,  0.0 hi,  0.0 si,  0.0 st
MiB Mem :   3658.2 total,   2607.2 free,    612.3 used,    438.7 buff/cache
MiB Swap:      0.0 total,      0.0 free,      0.0 used.   2904.3 avail Mem

nMaj nMin     PID USER      PR  NI    VIRT    RES    SHR S  %CPU  %MEM     TIME+ COMMAND
   0 4271    2058 pengdl    20   0   18312  18100   1460 S   0.0   0.5   0:01.67 leak2

通过top命令统计leak2进程的发生的缺页次数,主要是nMin(次缺页)。

正常情况下,nMin是恒定的,当执行下面的命令后:

echo 2 > /proc/`pidof leak2`/clear_refs

然后可以看到nMin会每秒增加1。用pidstat也可以佐证:

root@arm64:~# pidstat -r 1 -p `pidof leak2`
Linux 6.10.0+ (arm64)   08/23/24        _aarch64_       (4 CPU)

15:16:33      UID       PID  minflt/s  majflt/s     VSZ     RSS   %MEM  Command
15:16:34     1000      2058      0.99      0.00   18312   18100   0.48  leak2
15:16:35     1000      2058      1.00      0.00   18312   18100   0.48  leak2
15:16:36     1000      2058      1.00      0.00   18312   18100   0.48  leak2
15:16:37     1000      2058      0.99      0.00   18312   18100   0.48  leak2
15:16:38     1000      2058      1.00      0.00   18312   18100   0.48  leak2
15:16:39     1000      2058      1.00      0.00   18312   18100   0.48  leak2
15:16:40     1000      2058      1.00      0.00   18312   18100   0.48  leak2

内核是如何统计nMaj和nMin的呢?可以参考mm_account_fault。nMaj表示在处理缺页的时候需要从后备存储(如文件、swap设备、块设备等)读取数据到page,然后进行映射。而nMin表示数据已经在内存里了,只需要修改一下页表映射,相比之下nMin的开销要比nMaj小很多。

上面写完clear_refs,可以用crash再次查看一下第一个虚拟页的PTE映射属性:

VIRTUAL     PHYSICAL
ffff9a600000  138ae7000

PAGE DIRECTORY: ffff0000d719b000
   PGD: ffff0000d719bff8 => 800000116e70003
   PUD: ffff0000d6e70ff0 => 800000116f6d003
   PMD: ffff0000d6f6d698 => 800000116b4d003
   PTE: ffff0000d6b4d000 => e8000138ae7b43
  PAGE: 138ae7000

     PTE        PHYSICAL   FLAGS
e8000138ae7b43  138ae7000  (VALID|USER|SHARED|NG|PXN|UXN|DIRTY)

      VMA           START       END     FLAGS FILE
ffff0000d739d768 ffff9a600000 ffff9b600000 40112073

      PAGE        PHYSICAL      MAPPING       INDEX CNT FLAGS
fffffdffc3e2b9c0 138ae7000 ffff0000cc765cc9 ffff9a600  1 bfffe00001d0028 uptodate,lru,mappedtodisk,swapbacked,unevictable,mlocked

可以看到,AF位已经已经清除了。

使用perf观察缺页,并且记录调用栈

perf支持缺页事件:

# perf list
...
  major-faults                                       [Software event]
  minor-faults                                       [Software event]
  page-faults OR faults                              [Software event]
...

可以参考内核代码,其实上面两个事件也是在mm_account_fault中进行记录的:

/**
 * mm_account_fault - Do page fault accounting
 * @mm: mm from which memcg should be extracted. It can be NULL.
 * @regs: the pt_regs struct pointer.  When set to NULL, will skip accounting
 *        of perf event counters, but we'll still do the per-task accounting to
 *        the task who triggered this page fault.
 * @address: the faulted address.
 * @flags: the fault flags.
 * @ret: the fault retcode.
 *
 * This will take care of most of the page fault accounting.  Meanwhile, it
 * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
 * updates.  However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
 * still be in per-arch page fault handlers at the entry of page fault.
 */
static inline void mm_account_fault(struct mm_struct *mm, struct pt_regs *regs,
				    unsigned long address, unsigned int flags,
				    vm_fault_t ret)
{
	bool major;

	/* Incomplete faults will be accounted upon completion. */
	if (ret & VM_FAULT_RETRY)
		return;

	/*
	 * To preserve the behavior of older kernels, PGFAULT counters record
	 * both successful and failed faults, as opposed to perf counters,
	 * which ignore failed cases.
	 */
	count_vm_event(PGFAULT);
	count_memcg_event_mm(mm, PGFAULT);

	/*
	 * Do not account for unsuccessful faults (e.g. when the address wasn't
	 * valid).  That includes arch_vma_access_permitted() failing before
	 * reaching here. So this is not a "this many hardware page faults"
	 * counter.  We should use the hw profiling for that.
	 */
	if (ret & VM_FAULT_ERROR)
		return;

	/*
	 * We define the fault as a major fault when the final successful fault
	 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
	 * handle it immediately previously).
	 */
	major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);

	if (major)
		current->maj_flt++;
	else
		current->min_flt++;

	/*
	 * If the fault is done for GUP, regs will be NULL.  We only do the
	 * accounting for the per thread fault counters who triggered the
	 * fault, and we skip the perf event updates.
	 */
	if (!regs)
		return;

	if (major)
		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
	else
		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
}

执行如下命令:

# perf record -e minor-faults -g -p `pidof leak2`
# perf script
root@arm64:~# perf script
leak2    2058  4140.293988:          1 minor-faults:
            aaaab9690a60 func3+0xe4 (/home/pengdl/demo/kmemleak/leak2)
            aaaab9690ae4 func2+0x20 (/home/pengdl/demo/kmemleak/leak2)
            aaaab9690b0c func1+0x20 (/home/pengdl/demo/kmemleak/leak2)
            aaaab9690c54 main+0x140 (/home/pengdl/demo/kmemleak/leak2)
            ffff9b7b6e10 __libc_start_main+0xe8 (/usr/lib/aarch64-linux-gnu/libc-2.31.so)
            aaaab96908a4 _start+0x34 (/home/pengdl/demo/kmemleak/leak2)

leak2    2058  4141.307048:          1 minor-faults:
            aaaab9690a6c func3+0xf0 (/home/pengdl/demo/kmemleak/leak2)
            aaaab9690ae4 func2+0x20 (/home/pengdl/demo/kmemleak/leak2)
            aaaab9690b0c func1+0x20 (/home/pengdl/demo/kmemleak/leak2)
            aaaab9690c54 main+0x140 (/home/pengdl/demo/kmemleak/leak2)
            ffff9b7b6e10 __libc_start_main+0xe8 (/usr/lib/aarch64-linux-gnu/libc-2.31.so)
            aaaab96908a4 _start+0x34 (/home/pengdl/demo/kmemleak/leak2)
...

使用mem_abort事件

trace_event

内核导出了下面的trace point:

root@arm64:/sys/kernel/debug/tracing/events/exceptions# ls -l
total 0
-rw-r----- 1 root root 0 Aug 23 15:43 enable
-rw-r----- 1 root root 0 Aug 23 15:43 filter
drwxr-xr-x 1 root root 0 Aug 23 15:36 mem_abort_kernel
drwxr-xr-x 1 root root 0 Aug 23 15:36 mem_abort_user

从名字可以看到,当进程在用户态触发了mem abort,那么会触发mem_abort_user事件:

root@arm64:/sys/kernel/debug/tracing/events/exceptions/mem_abort_user# cat format
name: mem_abort_user
ID: 32
format:
        field:unsigned short common_type;       offset:0;       size:2; signed:0;
        field:unsigned char common_flags;       offset:2;       size:1; signed:0;
        field:unsigned char common_preempt_count;       offset:3;       size:1; signed:0;
        field:int common_pid;   offset:4;       size:4; signed:1;

        field:unsigned long address;    offset:8;       size:8; signed:0;
        field:unsigned long ip; offset:16;      size:8; signed:0;
        field:unsigned long error_code; offset:24;      size:8; signed:0;

print fmt: "address=%ps ip=%ps error_code=0x%lx", (void *)REC->address, (void *)REC->ip, REC->error_code

可以使用这个事件进行测试:

# cd /sys/kernel/debug/tracing/events/exceptions/mem_abort_user
# echo 'comm ~ "leak2"' > filter
# echo 1 > enable
# echo 1 > /sys/kernel/tracing/tracing_on

可以看到如下日志:

root@arm64:/sys/kernel/debug/tracing/events/exceptions/mem_abort_user# cat /sys/kernel/tracing/trace_pipe
           leak2-2058    [001] .....  5312.321453: mem_abort_user: address=0xffff9a71e010 ip=0xaaaab9690a6c error_code=0x9200000b
           leak2-2058    [001] .....  5313.327391: mem_abort_user: address=0xffff9a71f010 ip=0xaaaab9690a60 error_code=0x9200004b
           leak2-2058    [001] .....  5314.331440: mem_abort_user: address=0xffff9a720010 ip=0xaaaab9690a6c error_code=0x9200000b
           leak2-2058    [001] .....  5315.337957: mem_abort_user: address=0xffff9a721010 ip=0xaaaab9690a60 error_code=0x9200004b

此外,也可以对trace event进行配置,当记录事件的时候把内核栈和用户栈也一并记录下来:

# cd /sys/kernel/debug/tracing/options
# echo 1 > userstacktrace
# echo 1 > stacktrace
# echo 1 > sym-userobj

此时看到的日志如下:

           leak2-2058    [001] .....  5537.394169: mem_abort_user: address=0xffff9a7fe010 ip=0xaaaab9690a6c error_code=0x9200000b
           leak2-2058    [001] .....  5537.394650: <stack trace>
 => do_mem_abort
 => el0_da
 => el0t_64_sync_handler
 => el0t_64_sync
           leak2-2058    [001] .....  5537.394672: <user stack trace>
 => /home/pengdl/demo/kmemleak/leak2[+0xa6c]
 => /home/pengdl/demo/kmemleak/leak2[+0xae4]
 => /home/pengdl/demo/kmemleak/leak2[+0xb0c]
 => /home/pengdl/demo/kmemleak/leak2[+0xc54]
 => /usr/lib/aarch64-linux-gnu/libc-2.31.so[+0x20e10]
 => /home/pengdl/demo/kmemleak/leak2[+0x8a4]
           leak2-2058    [001] .....  5538.399253: mem_abort_user: address=0xffff9a7ff010 ip=0xaaaab9690a60 error_code=0x9200004b
           leak2-2058    [001] .....  5538.401479: <stack trace>
 => do_mem_abort
 => el0_da
 => el0t_64_sync_handler
 => el0t_64_sync
           leak2-2058    [001] .....  5538.401545: <user stack trace>
 => /home/pengdl/demo/kmemleak/leak2[+0xa60]
 => /home/pengdl/demo/kmemleak/leak2[+0xae4]
 => /home/pengdl/demo/kmemleak/leak2[+0xb0c]
 => /home/pengdl/demo/kmemleak/leak2[+0xc54]
 => /usr/lib/aarch64-linux-gnu/libc-2.31.so[+0x20e10]
 => /home/pengdl/demo/kmemleak/leak2[+0x8a4]

使用perf

内核导出了mem_abort事件:

root@arm64:~# perf list | grep mem_abort
  exceptions:mem_abort_kernel                        [Tracepoint event]
  exceptions:mem_abort_user                          [Tracepoint event]

然后使用下面的命令记录:

# perf record -e exceptions:mem_abort_user -g -p `pidof leak2`

解析抓到的数据:

root@arm64:~# perf script
leak2    2058 [000]  4855.336563: exceptions:mem_abort_user: address=0xffff9b557010 ip=0xaaaab9690a60 error_code=0x9200004b
        ffff80008002aae0 do_mem_abort+0xc8 ([kernel.kallsyms])
        ffff80008002aae0 do_mem_abort+0xc8 ([kernel.kallsyms])
        ffff800080c73380 el0_da+0x38 ([kernel.kallsyms])
        ffff800080c74504 el0t_64_sync_handler+0xe4 ([kernel.kallsyms])
        ffff80008001150c el0t_64_sync+0x14c ([kernel.kallsyms])
            aaaab9690a60 func3+0xe4 (/home/pengdl/demo/kmemleak/leak2)
            aaaab9690ae4 func2+0x20 (/home/pengdl/demo/kmemleak/leak2)
            aaaab9690b0c func1+0x20 (/home/pengdl/demo/kmemleak/leak2)
            aaaab9690c54 main+0x140 (/home/pengdl/demo/kmemleak/leak2)
            ffff9b7b6e10 __libc_start_main+0xe8 (/usr/lib/aarch64-linux-gnu/libc-2.31.so)
            aaaab96908a4 _start+0x34 (/home/pengdl/demo/kmemleak/leak2)

此外,因为是基于trace point,所以还可以对数据进行筛选和过滤,比如:

root@arm64:~# perf record -e exceptions:mem_abort_user -g --filter 'address <= 0xffff9b600010 && address >= 0xffff9a600010 && common_pid == 2058 && comm ~ "leak2"'

完。

posted @ 2024-08-23 16:05  摩斯电码  阅读(98)  评论(0编辑  收藏  举报