NLP(十七) 利用DNN对Email分类
原文链接:http://www.one2know.cn/nlp17/
- 数据集
scikit-learn中20个新闻组,总邮件18846,训练集11314,测试集7532,类别20
from sklearn.datasets import fetch_20newsgroups
newsgroups_train = fetch_20newsgroups(subset='train')
newsgroups_test = fetch_20newsgroups(subset='test')
x_train = newsgroups_train.data
x_test = newsgroups_test.data
y_train = newsgroups_train.target
y_test = newsgroups_test.target
print('List of all 20 categories:')
print(newsgroups_train.target_names,'\n')
print('Sample Email:')
print(x_train[0])
print('Sample Target Category:')
print(y_train[0])
print(newsgroups_train.target_names[y_train[0]])
输出:
List of all 20 categories:
['alt.atheism', 'comp.graphics', 'comp.os.ms-windows.misc', 'comp.sys.ibm.pc.hardware', 'comp.sys.mac.hardware', 'comp.windows.x', 'misc.forsale', 'rec.autos', 'rec.motorcycles', 'rec.sport.baseball', 'rec.sport.hockey', 'sci.crypt', 'sci.electronics', 'sci.med', 'sci.space', 'soc.religion.christian', 'talk.politics.guns', 'talk.politics.mideast', 'talk.politics.misc', 'talk.religion.misc']
Sample Email:
From: lerxst@wam.umd.edu (where's my thing)
Subject: WHAT car is this!?
Nntp-Posting-Host: rac3.wam.umd.edu
Organization: University of Maryland, College Park
Lines: 15
I was wondering if anyone out there could enlighten me on this car I saw
the other day. It was a 2-door sports car, looked to be from the late 60s/
early 70s. It was called a Bricklin. The doors were really small. In addition,
the front bumper was separate from the rest of the body. This is
all I know. If anyone can tellme a model name, engine specs, years
of production, where this car is made, history, or whatever info you
have on this funky looking car, please e-mail.
Thanks,
- IL
---- brought to you by your neighborhood Lerxst ----
- 实现步骤
- 预处理
1)去标点符号
2)分词
3)单词都转化成小写
4)去停用词
5)保留长度至少为3的词
6)提取词干
7)词性标注
8)词形还原 - TF-IDF向量转换
- 深度学习模型的训练和测试
- 模型评估和结果分析
- 代码
from sklearn.datasets import fetch_20newsgroups
newsgroups_train = fetch_20newsgroups(subset='train')
newsgroups_test = fetch_20newsgroups(subset='test')
x_train = newsgroups_train.data
x_test = newsgroups_test.data
y_train = newsgroups_train.target
y_test = newsgroups_test.target
# print('List of all 20 categories:')
# print(newsgroups_train.target_names,'\n')
# print('Sample Email:')
# print(x_train[0])
# print('Sample Target Category:')
# print(y_train[0])
# print(newsgroups_train.target_names[y_train[0]])
import nltk
from nltk.corpus import stopwords
from nltk.stem import WordNetLemmatizer
import string
import pandas as pd
from nltk import pos_tag
from nltk.stem import PorterStemmer
def preprocessing(text):
# 标点都换成空格,再以空格分割,在以空格为分割合并所以元素
text2 = ' '.join(''.join([' ' if ch in string.punctuation else ch for ch in text]).split())
# 分词
tokens = [word for sent in nltk.sent_tokenize(text2) for word in nltk.word_tokenize(sent)]
tokens = [word.lower() for word in tokens]
stopwds = stopwords.words('english')
# 过滤掉 停用词 和 长度<3 的token
tokens = [token for token in tokens if token not in stopwds and len(token) >= 3]
# 词干提取
stemmer = PorterStemmer()
tokens = [stemmer.stem(word) for word in tokens]
# 词性标注
tagged_corpus = pos_tag(tokens)
Noun_tags = ['NN','NNP','NNPS','NNS'] # 普通名词 专有名词 专有名词复数 普通名词复数
Verb_tags = ['VB','VBD','VBG','VBN','VBP','VBZ']
# 动词 动词过去式 动词现在分词 动词过去分词 动词现在时 动词现在时第三人称单数
lemmatizer = WordNetLemmatizer()
def prat_lemmatize(token,tag):
if tag in Noun_tags:
return lemmatizer.lemmatize(token,'n')
elif tag in Verb_tags:
return lemmatizer.lemmatize(token,'v')
else:
return lemmatizer.lemmatize(token,'n')
pre_proc_text = ' '.join([prat_lemmatize(token,tag) for token,tag in tagged_corpus])
return pre_proc_text
# 处理数据集
x_train_preprocessed = []
for i in x_train:
x_train_preprocessed.append(preprocessing(i))
x_test_preprocessed = []
for i in x_test:
x_test_preprocessed.append(preprocessing(i))
# 得到每个文档的TF-IDF向量
from sklearn.feature_extraction.text import TfidfVectorizer
vectorizer = TfidfVectorizer(min_df=2,ngram_range=(1,2),stop_words='english',
max_features=10000,strip_accents='unicode',norm='l2')
x_train_2 = vectorizer.fit_transform(x_train_preprocessed).todense() # 稀疏矩阵=>密集!?
x_test_2 = vectorizer.transform(x_test_preprocessed).todense()
# 导入深度学习模块
import numpy as np
from keras.models import Sequential
from keras.layers.core import Dense,Dropout,Activation
from keras.optimizers import Adadelta,Adam,RMSprop
from keras.utils import np_utils
np.random.seed(0)
nb_classes = 20
batch_size = 64 # 批尺寸
nb_epochs = 20 # 迭代次数
# 将20个类变成one-hot编码向量
Y_train = np_utils.to_categorical(y_train,nb_classes)
# 建立keras模型 3个隐藏层 神经元个数分别为1000 500 50,每层dropout均为50%,优化算法为Adam
model = Sequential()
model.add(Dense(1000,input_shape=(10000,)))
model.add(Activation('relu'))
model.add(Dropout(0.5))
model.add(Dense(500))
model.add(Activation('relu'))
model.add(Dropout(0.5))
model.add(Dense(50))
model.add(Activation('relu'))
model.add(Dropout(0.5))
model.add(Dense(nb_classes))
model.add(Activation('softmax'))
model.compile(loss='categorical_crossentropy',optimizer='adam')
# loss=交叉熵损失函数 optimizer优化程序=adam
print(model.summary())
# 模型训练
model.fit(x_train_2,Y_train,batch_size=batch_size,epochs=nb_epochs,verbose=1)
# 模型预测
y_train_predclass = model.predict_classes(x_train_2,batch_size=batch_size)
y_test_preclass = model.predict_classes(x_test_2,batch_size==batch_size)
from sklearn.metrics import accuracy_score,classification_report
print("\n\nDeep Neural Network - Train accuracy:",round(accuracy_score(y_train,y_train_predclass),3))
print("\nDeep Neural Network - Test accuracy:",round(accuracy_score(y_test,y_test_preclass),3))
print("\nDeep Neural Network - Train Classification Report")
print(classification_report(y_train,y_train_predclass))
print("\nDeep Neural Network - Test Classification Report")
print(classification_report(y_test,y_test_preclass))
输出:
Using TensorFlow backend.
WARNING:tensorflow:From
D:\Python37\Lib\site-packages\tensorflow\python\framework\op_def_library.py:263:
colocate_with (from tensorflow.python.framework.ops) is deprecated and will be removed in a
future version.
Instructions for updating:
Colocations handled automatically by placer.
WARNING:tensorflow:From
D:\Anaconda3\lib\site-packages\keras\backend\tensorflow_backend.py:3445: calling dropout
(from tensorflow.python.ops.nn_ops) with keep_prob is deprecated and will be removed in a
future version.
Instructions for updating:
Please use `rate` instead of `keep_prob`. Rate should be set to `rate = 1 - keep_prob`.
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
dense_1 (Dense) (None, 1000) 10001000
_________________________________________________________________
activation_1 (Activation) (None, 1000) 0
_________________________________________________________________
dropout_1 (Dropout) (None, 1000) 0
_________________________________________________________________
dense_2 (Dense) (None, 500) 500500
_________________________________________________________________
activation_2 (Activation) (None, 500) 0
_________________________________________________________________
dropout_2 (Dropout) (None, 500) 0
_________________________________________________________________
dense_3 (Dense) (None, 50) 25050
_________________________________________________________________
activation_3 (Activation) (None, 50) 0
_________________________________________________________________
dropout_3 (Dropout) (None, 50) 0
_________________________________________________________________
dense_4 (Dense) (None, 20) 1020
_________________________________________________________________
activation_4 (Activation) (None, 20) 0
=================================================================
Total params: 10,527,570
Trainable params: 10,527,570
Non-trainable params:0
______________________________________________________________
None
WARNING:tensorflow:From
D:\Python37\Lib\site-packages\tensorflow\python\ops\math_ops.py:3066: to_int32 (from
tensorflow.python.ops.math_ops) is deprecated and will be removed in a future version.
Instructions for updating:
Use tf.cast instead.
Epoch 1/20
2019-07-06 23:03:46.934966: I tensorflow/core/platform/cpu_feature_guard.cc:141] Your CPU
supports instructions that this TensorFlow binary was not compiled to use: AVX2
64/11314 [..............................] - ETA: 4:41 - loss: 2.9946
128/11314 [..............................] - ETA: 2:43 - loss: 2.9948
192/11314 [..............................] - ETA: 2:03 - loss: 2.9951
256/11314 [..............................] - ETA: 1:43 - loss: 2.9947
320/11314 [..............................] - ETA: 1:32 - loss: 2.9938
此处省略一堆epoch的一堆操作
Deep Neural Network - Train accuracy: 0.999
Deep Neural Network - Test accuracy: 0.811
Deep Neural Network - Train Classification Report
precision recall f1-score support
0 1.00 1.00 1.00 480
1 1.00 0.99 1.00 584
2 0.99 1.00 1.00 591
3 1.00 1.00 1.00 590
4 1.00 1.00 1.00 578
5 1.00 1.00 1.00 593
6 1.00 1.00 1.00 585
7 1.00 1.00 1.00 594
8 1.00 1.00 1.00 598
9 1.00 1.00 1.00 597
10 1.00 1.00 1.00 600
11 1.00 1.00 1.00 595
12 1.00 1.00 1.00 591
13 1.00 1.00 1.00 594
14 1.00 1.00 1.00 593
15 1.00 1.00 1.00 599
16 1.00 1.00 1.00 546
17 1.00 1.00 1.00 564
18 1.00 1.00 1.00 465
19 1.00 1.00 1.00 377
accuracy 1.00 11314
macro avg 1.00 1.00 1.00 11314
weighted avg 1.00 1.00 1.00 11314
Deep Neural Network - Test Classification Report
precision recall f1-score support
0 0.78 0.78 0.78 319
1 0.70 0.74 0.72 389
2 0.68 0.69 0.68 394
3 0.71 0.69 0.70 392
4 0.82 0.76 0.79 385
5 0.84 0.74 0.78 395
6 0.73 0.87 0.80 390
7 0.85 0.86 0.86 396
8 0.93 0.91 0.92 398
9 0.89 0.91 0.90 397
10 0.96 0.97 0.96 399
11 0.87 0.95 0.91 396
12 0.69 0.72 0.70 393
13 0.88 0.77 0.82 396
14 0.83 0.92 0.87 394
15 0.91 0.84 0.88 398
16 0.78 0.83 0.80 364
17 0.97 0.87 0.92 376
18 0.74 0.66 0.70 310
19 0.59 0.62 0.61 251
accuracy 0.81 7532
macro avg 0.81 0.81 0.81 7532
weighted avg 0.81 0.81 0.81 7532