LeetCode 图

基础部分

785. 判断二分图

中等

给定一个无向图graph,当这个图为二分图时返回true

如果我们能将一个图的节点集合分割成两个独立的子集A和B,并使图中的每一条边的两个节点一个来自A集合,一个来自B集合,我们就将这个图称为二分图。

graph将会以邻接表方式给出,graph[i]表示图中与节点i相连的所有节点。每个节点都是一个在0graph.length-1之间的整数。这图中没有自环和平行边: graph[i] 中不存在i,并且graph[i]中没有重复的值。

示例 1:
输入: [[1,3], [0,2], [1,3], [0,2]]
输出: true
解释: 
无向图如下:
0----1
|    |
|    |
3----2
我们可以将节点分成两组: {0, 2} 和 {1, 3}。
示例 2:
输入: [[1,2,3], [0,2], [0,1,3], [0,2]]
输出: false
解释: 
无向图如下:
0----1
| \  |
|  \ |
3----2
我们不能将节点分割成两个独立的子集。

注意:

  • graph 的长度范围为 [1, 100]
  • graph[i] 中的元素的范围为 [0, graph.length - 1]
  • graph[i] 不会包含 i 或者有重复的值。
  • 图是无向的: 如果jgraph[i]里边, 那么 i 也会在 graph[j]里边。
class Solution {
    public boolean isBipartite(int[][] graph) {
        //set: 0未上色,1和-1两种颜色
        int[] set = new int[graph.length];
        for (int node = 0; node < graph.length; node++){
            if (set[node] != 0) continue;
            if (!dfs(graph,node,1,set) && !dfs(graph,node,-1,set))
                return false;
        }
        return true;
    }
    
    private boolean dfs(int[][] graph, int node, int color, int[] set){
        if (set[node] != 0) return set[node] == color;
        set[node] = color;
        for (int point : graph[node]){
            if (!dfs(graph, point, -color, set)){
                set[node] = 0; //发现color不行,擦去,后边再试-color
                return false;
            }
        }
        return true;
    }
}

207. 课程表

中等

你这个学期必须选修 numCourse 门课程,记为 0numCourse-1

在选修某些课程之前需要一些先修课程。 例如,想要学习课程 0 ,你需要先完成课程 1 ,我们用一个匹配来表示他们:[0,1]

给定课程总量以及它们的先决条件,请你判断是否可能完成所有课程的学习?

示例 1:

输入: 2, [[1,0]] 
输出: true
解释: 总共有 2 门课程。学习课程 1 之前,你需要完成课程 0。所以这是可能的。

示例 2:

输入: 2, [[1,0],[0,1]]
输出: false
解释: 总共有 2 门课程。学习课程 1 之前,你需要先完成课程 0;并且学习课程 0 之前,你还应先完成课程 1。这是不可能的。

提示:

  1. 输入的先决条件是由 边缘列表 表示的图形,而不是 邻接矩阵 。详情请参见图的表示法
  2. 你可以假定输入的先决条件中没有重复的边。
  3. 1 <= numCourses <= 10^5
class Solution {
    public boolean canFinish(int numCourses, int[][] prerequisites) {
        List<Integer>[] graph = new List[numCourses];//建图
        for (int i = 0; i < numCourses; i++){
            graph[i] = new ArrayList<>();
        }
        int[] inDegree = new int[numCourses];
        for (int[] pre : prerequisites){
            graph[pre[1]].add(pre[0]); //统计后置课程
            inDegree[pre[0]]++; //统计入度
        }
        Queue<Integer> queue = new LinkedList<>();
        for (int course = 0; course < numCourses; course++){ //直接能学的先学了
            if (inDegree[course] == 0) queue.add(course);
        }
        int learned = 0; //学习的课程数
        while (!queue.isEmpty()){
            int cur = queue.poll();
            learned++;
            for (int back : graph[cur]){
                inDegree[back]--; //后置课程入度-1
                if (inDegree[back] == 0){
                    queue.add(back);
                }
            }
        }
        return learned >= numCourses;
    }
}

210. 课程表 II

中等

现在你总共有 n 门课需要选,记为 0n-1

在选修某些课程之前需要一些先修课程。 例如,想要学习课程 0 ,你需要先完成课程 1 ,我们用一个匹配来表示他们: [0,1]

给定课程总量以及它们的先决条件,返回你为了学完所有课程所安排的学习顺序。

可能会有多个正确的顺序,你只要返回一种就可以了。如果不可能完成所有课程,返回一个空数组。

示例 1:

输入: 2, [[1,0]] 
输出: [0,1]
解释: 总共有 2 门课程。要学习课程 1,你需要先完成课程 0。因此,正确的课程顺序为 [0,1] 。

示例 2:

输入: 4, [[1,0],[2,0],[3,1],[3,2]]
输出: [0,1,2,3] or [0,2,1,3]
解释: 总共有 4 门课程。要学习课程 3,你应该先完成课程 1 和课程 2。并且课程 1 和课程 2 都应该排在课程 0 之后。
     因此,一个正确的课程顺序是 [0,1,2,3] 。另一个正确的排序是 [0,2,1,3] 。

说明:

  1. 输入的先决条件是由边缘列表表示的图形,而不是邻接矩阵。详情请参见图的表示法
  2. 你可以假定输入的先决条件中没有重复的边。

提示:

  1. 这个问题相当于查找一个循环是否存在于有向图中。如果存在循环,则不存在拓扑排序,因此不可能选取所有课程进行学习。
  2. 通过 DFS 进行拓扑排序 - 一个关于Coursera的精彩视频教程(21分钟),介绍拓扑排序的基本概念。
  3. 拓扑排序也可以通过 BFS 完成。
class Solution {
    public int[] findOrder(int numCourses, int[][] prerequisites) {
        List<Integer>[] graph = new List[numCourses];
        for (int i = 0; i < numCourses; i++){
            graph[i] = new ArrayList<>();
        }
        int[] inDegree = new int[numCourses];
        for (int[] pre : prerequisites){
            graph[pre[1]].add(pre[0]);
            inDegree[pre[0]]++;
        }
        Queue<Integer> queue = new LinkedList<>();
        for (int course = 0; course < numCourses; course++){
            if (inDegree[course] == 0) queue.add(course);
        }
        int[] res = new int[numCourses];
        int index = 0;
        while (!queue.isEmpty()){
            int cur = queue.poll();
            res[index++] = cur;
            for (int back : graph[cur]){
                inDegree[back]--;
                if (inDegree[back] == 0)
                    queue.add(back);
            }
        }
        return index == numCourses ? res : new int[]{};
    }
}

684. 冗余连接

中等

在本问题中, 树指的是一个连通且无环的无向图。

输入一个图,该图由一个有着N个节点 (节点值不重复1, 2, ..., N) 的树及一条附加的边构成。附加的边的两个顶点包含在1到N中间,这条附加的边不属于树中已存在的边。

结果图是一个以组成的二维数组。每一个的元素是一对[u, v] ,满足 u < v,表示连接顶点uv无向图的边。

返回一条可以删去的边,使得结果图是一个有着N个节点的树。如果有多个答案,则返回二维数组中最后出现的边。答案边 [u, v] 应满足相同的格式 u < v

示例 1:

输入: [[1,2], [1,3], [2,3]]
输出: [2,3]
解释: 给定的无向图为:
  1
 / \
2 - 3

示例 2:

输入: [[1,2], [2,3], [3,4], [1,4], [1,5]]
输出: [1,4]
解释: 给定的无向图为:
5 - 1 - 2
    |   |
    4 - 3

注意:

  • 输入的二维数组大小在 3 到 1000。
  • 二维数组中的整数在1到N之间,其中N是输入数组的大小。
class Solution {
    class DSU {
        int[] root; //点连接的根
        int[] size; //连接集的大小
        
        public DSU(int n){
            root = new int[n];
            size = new int[n];
            
            for (int i = 0; i < n; i++)
                root[i] = i; //初始化,根就是自己
        }
        
        public int find(int x){ //寻找根+递归更新根
            if (root[x] != x){
                root[x] = find(root[x]);
            }
            return root[x];
        }
        
        public boolean union(int x, int y){
            int rootX = find(x);
            int rootY = find(y);
            if (rootX == rootY) return false; //根一样=>在一个集里,连接失败
            if (size[rootX] < size[rootY]){ //小集并到大集上
                root[rootX] = rootY; //更新根
                size[rootY]++; //更新后代数大小
            }else {
                root[rootY] = root[rootX];
                size[rootX]++;
            }
            return true;
        }
    }
    
    public int[] findRedundantConnection(int[][] edges) {
        int n = edges.length;
        DSU dsu = new DSU(n+1);
        for (int[] e : edges){
            if (!dsu.union(e[0],e[1])) return e;
        }
        return new int[]{};
    }
}

频率排序

269,928,839,743

posted @ 2020-08-04 12:43  鹏懿如斯  阅读(459)  评论(0编辑  收藏  举报