深度学习常见的优化方法(Optimizer)总结:Adam,SGD,Momentum,AdaGard等


原文:https://www.cnblogs.com/GeekDanny/p/9655597.html

基础知识:


机器学习几乎所有的算法都要利用损失函数 lossfunction 来检验算法模型的优劣,同时利用损失函数来提升算法模型.

这个提升的过程就叫做优化(Optimizer)

下面这个内容主要就是介绍可以用来优化损失函数的常用方法

常用的优化方法(Optimizer):

  • 1.SGD&BGD&Mini-BGD:

    SGD(stochastic gradient descent):随机梯度下降,算法在每读入一个数据都会立刻计算loss function的梯度来update参数.假设loss function为L(w),下同.

    w=ηwiL(wi)


    Pros:收敛的速度快;可以实现在线更新;能够跳出局部最优

    Cons:很容易陷入到局部最优,困在马鞍点.

    BGD(batch gradient descent):批量梯度下降,算法在读取整个数据集后累加来计算损失函数的的梯度
    w=ηwL(w)


    Pros:如果loss function为convex,则基本可以找到全局最优解

    Cons:数据处理量大,导致梯度下降慢;不能实时增加实例,在线更新;训练占内存

    Mini-BGD(mini-batch gradient descent):顾名思义,选择小批量数据进行梯度下降,这是一个折中的方法.采用训练集的子集(mini-batch)来计算loss function的梯度.
    w=ηwi:i+nL(wi:i+n)


    这个优化方法用的也是比较多的,计算效率高而且收敛稳定,是现在深度学习的主流方法.

    上面的方法都存在一个问题,就是update更新的方向完全依赖于计算出来的梯度.很容易陷入局部最优的马鞍点.能不能改变其走向,又保证原来的梯度方向.就像向量变换一样,我们模拟物理中物体流动的动量概念(惯性).引入Momentum的概念.

  • 2.Momentum

    在更新方向的时候保留之前的方向,增加稳定性而且还有摆脱局部最优的能力
    Δw=αΔwηL(w)
    w=w+Δw


    若当前梯度的方向与历史梯度一致(表明当前样本不太可能为异常点),则会增强这个方向的梯度,若当前梯度与历史梯方向不一致,则梯度会衰减。一种形象的解释是:我们把一个球推下山,球在下坡时积聚动量,在途中变得越来越快,η可视为空气阻力,若球的方向发生变化,则动量会衰减。
  • 3.Adagrad:(adaptive gradient)自适应梯度算法,是一种改进的随机梯度下降算法.
    以前的算法中,每一个参数都使用相同的学习率α. Adagrad算法能够在训练中自动对learning_rate进行调整,出现频率较低参数采用较大的α更新.出现频率较高的参数采用较小的α更新.根据描述这个优化方法很适合处理稀疏数据.
    G=τ=1tgτgτT s.t.gτ=L(wi)
    对角线矩阵
    Gj,j=τ=1tgτ,j2
    这个对角线矩阵的元素代表的是参数的出现频率.每个参数的更新
    wj=wjηGj,jgj
  • 4.RMSprop:(root mean square propagation)也是一种自适应学习率方法.不同之处在于,Adagrad会累加之前所有的梯度平方,RMProp仅仅是计算对应的平均值.可以缓解Adagrad算法学习率下降较快的问题.
    v(w,t)=γv(w,t1)+(1γ)(L(wi))2,γ
      参数更新
    w=wηv(w,t)L(wi)
  • 5.Adam:(adaptive moment estimation)是对RMSProp优化器的更新.利用梯度的一阶矩估计和二阶矩估计动态调整每个参数的学习率.
    优点:每一次迭代学习率都有一个明确的范围,使得参数变化很平稳.

    mwt+1=β1mwt+(1β1)Lt,m

    vwt+1=β2mwt+(1β2)(Lt)2,v

    m^w=mwt+11β1t+1

    v^w=vwt+11β2t+1

    wt+1←=wtηm^wv^w+ϵ

    Adam是实际学习中最常用的算法

优化方法在实际中的直观体验

损失曲面的轮廓和不同优化算法的时间演化。 注意基于动量的方法的“过冲”行为,这使得优化看起来像一个滚下山的球

优化环境中鞍点的可视化,其中沿不同维度的曲率具有不同的符号(一维向上弯曲,另一维向下)。 请注意,SGD很难打破对称性并陷入困境。 相反,诸如RMSprop之类的算法将在鞍座方向上看到非常低的梯度。 由于RMSprop更新中的分母术语,这将提高此方向的有效学习率,从而帮助RMSProp继续进行.

参考文献:

posted @ 2019-07-07 09:57  鹏懿如斯  阅读(1864)  评论(0编辑  收藏  举报