[转载]二分查找
二分查找又称折半查找,它是一种效率较高的查找方法。
【二分查找要求】:1.必须采用顺序存储结构 2.必须按关键字大小有序排列。
【优缺点】折半查找法的优点是比较次数少,查找速度快,平均性能好;其缺点是要求待查表为有序表,且插入删除困难。因此,折半查找方法适用于不经常变动而查找频繁的有序列表。
【算法思想】首先,将表中间位置记录的关键字与查找关键字比较,如果两者相等,则查找成功;否则利用中间位置记录将表分成前、后两个子表,如果中间位置记录的关键字大于查找关键字,则进一步查找前一子表,否则进一步查找后一子表。
重复以上过程,直到找到满足条件的记录,使查找成功,或直到子表不存在为止,此时查找不成功。
【算法复杂度】假设其数组长度为n,其算法复杂度为o(log(n))
下面提供一段二分查找实现的伪代码:
BinarySearch(max,min,des)
mid-<(max+min)/2
while(min<max)
mid=(min+max)/2
if mid=des then
return mid
elseif mid >des then
max=mid-1
else
min=mid+1
return max
【二分查找要求】:1.必须采用顺序存储结构 2.必须按关键字大小有序排列。
【优缺点】折半查找法的优点是比较次数少,查找速度快,平均性能好;其缺点是要求待查表为有序表,且插入删除困难。因此,折半查找方法适用于不经常变动而查找频繁的有序列表。
【算法思想】首先,将表中间位置记录的关键字与查找关键字比较,如果两者相等,则查找成功;否则利用中间位置记录将表分成前、后两个子表,如果中间位置记录的关键字大于查找关键字,则进一步查找前一子表,否则进一步查找后一子表。
重复以上过程,直到找到满足条件的记录,使查找成功,或直到子表不存在为止,此时查找不成功。
【算法复杂度】假设其数组长度为n,其算法复杂度为o(log(n))
下面提供一段二分查找实现的伪代码:
BinarySearch(max,min,des)
mid-<(max+min)/2
while(min<max)
mid=(min+max)/2
if mid=des then
return mid
elseif mid >des then
max=mid-1
else
min=mid+1
return max