torch.optim.SGD()各参数的解释
看pytorch中文文档摘抄的笔记。
class torch.optim.SGD(params, lr=, momentum=0, dampening=0, weight_decay=0, nesterov=False)[source]
实现随机梯度下降算法(momentum可选)。
Nesterov动量基于On the importance of initialization and momentum in deep learning中的公式.
参数:
- params (iterable) – 待优化参数的iterable或者是定义了参数组的dict
- lr (
float
) – 学习率 - momentum (
float
, 可选) – 动量因子(默认:0) - weight_decay (
float
, 可选) – 权重衰减(L2惩罚)(默认:0) - dampening (
float
, 可选) – 动量的抑制因子(默认:0) - nesterov (
bool
, 可选) – 使用Nesterov动量(默认:False)
例子:
>>> optimizer = torch.optim.SGD(model.parameters(), lr=0.1, momentum=0.9)
>>> optimizer.zero_grad()
>>> loss_fn(model(input), target).backward()
>>> optimizer.step()
分类:
机器学习
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· AI与.NET技术实操系列(二):开始使用ML.NET
· 记一次.NET内存居高不下排查解决与启示
· 探究高空视频全景AR技术的实现原理
· 理解Rust引用及其生命周期标识(上)
· 浏览器原生「磁吸」效果!Anchor Positioning 锚点定位神器解析
· 全程不用写代码,我用AI程序员写了一个飞机大战
· DeepSeek 开源周回顾「GitHub 热点速览」
· 记一次.NET内存居高不下排查解决与启示
· MongoDB 8.0这个新功能碉堡了,比商业数据库还牛
· .NET10 - 预览版1新功能体验(一)