$$ %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Self-defined math definitions %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Math symbol commands \newcommand{\intd}{\,{\rm d}} % Symbol 'd' used in integration, such as 'dx' \newcommand{\diff}{{\rm d}} % Symbol 'd' used in differentiation \newcommand{\Diff}{{\rm D}} % Symbol 'D' used in differentiation \newcommand{\pdiff}{\partial} % Partial derivative \newcommand{DD}[2]{\frac{\diff}{\diff #2}\left( #1 \right)} \newcommand{Dd}[2]{\frac{\diff #1}{\diff #2}} \newcommand{PD}[2]{\frac{\pdiff}{\pdiff #2}\left( #1 \right)} \newcommand{Pd}[2]{\frac{\pdiff #1}{\pdiff #2}} \newcommand{\rme}{{\rm e}} % Exponential e \newcommand{\rmi}{{\rm i}} % Imaginary unit i \newcommand{\rmj}{{\rm j}} % Imaginary unit j \newcommand{\vect}[1]{\boldsymbol{#1}} % Vector typeset in bold and italic \newcommand{\phs}[1]{\dot{#1}} % Scalar phasor \newcommand{\phsvect}[1]{\boldsymbol{\dot{#1}}} % Vector phasor \newcommand{\normvect}{\vect{n}} % Normal vector: n \newcommand{\dform}[1]{\overset{\rightharpoonup}{\boldsymbol{#1}}} % Vector for differential form \newcommand{\cochain}[1]{\overset{\rightharpoonup}{#1}} % Vector for cochain \newcommand{\bigabs}[1]{\bigg\lvert#1\bigg\rvert} % Absolute value (single big vertical bar) \newcommand{\Abs}[1]{\big\lvert#1\big\rvert} % Absolute value (single big vertical bar) \newcommand{\abs}[1]{\lvert#1\rvert} % Absolute value (single vertical bar) \newcommand{\bignorm}[1]{\bigg\lVert#1\bigg\rVert} % Norm (double big vertical bar) \newcommand{\Norm}[1]{\big\lVert#1\big\rVert} % Norm (double big vertical bar) \newcommand{\norm}[1]{\lVert#1\rVert} % Norm (double vertical bar) \newcommand{\ouset}[3]{\overset{#3}{\underset{#2}{#1}}} % over and under set % Super/subscript for column index of a matrix, which is used in tensor analysis. \newcommand{\cscript}[1]{\;\; #1} % Star symbol used as prefix in front of a paragraph with no indent \newcommand{\prefstar}{\noindent$\ast$ } % Big vertical line restricting the function. % Example: $u(x)\restrict_{\Omega_0}$ \newcommand{\restrict}{\big\vert} % Math operators which are typeset in Roman font \DeclareMathOperator{\sgn}{sgn} % Sign function \DeclareMathOperator{\erf}{erf} % Error function \DeclareMathOperator{\Bd}{Bd} % Boundary of a set, used in topology \DeclareMathOperator{\Int}{Int} % Interior of a set, used in topology \DeclareMathOperator{\rank}{rank} % Rank of a matrix \DeclareMathOperator{\divergence}{div} % Curl \DeclareMathOperator{\curl}{curl} % Curl \DeclareMathOperator{\grad}{grad} % Gradient \DeclareMathOperator{\tr}{tr} % Trace \DeclareMathOperator{\span}{span} % Span $$

止于至善

As regards numerical analysis and mathematical electromagnetism

摘要: This post summarises different ways of constructing continuous functions, which are introduced in Section 18 of James Munkres “Topology”.Constant function.Inclusion function.N.B. The function domain s... 阅读全文
posted @ 2018-12-19 18:12 皮波迪博士 阅读(279) 评论(0) 推荐(0) 编辑
摘要: Theorem 18.4 in James Munkres “Topology” states that if a function \(f : A \rightarrow X \times Y\) is continuous, its coordinate functions \(f_1 : A 阅读全文
posted @ 2018-12-18 21:35 皮波迪博士 阅读(275) 评论(0) 推荐(0) 编辑
摘要: Understanding of continuity definition in topology When we learn calculus in university as freshmen, we are usually force-fed with the \(\epsilon-\del 阅读全文
posted @ 2018-12-15 23:17 皮波迪博士 阅读(418) 评论(0) 推荐(0) 编辑
摘要: Theorem 16.3 If \(A\) is a subspace of \(X\) and \(B\) is a subspace of \(Y\), then the product topology on \(A \times B\) is the same as the topology 阅读全文
posted @ 2018-12-13 23:18 皮波迪博士 阅读(352) 评论(0) 推荐(0) 编辑
摘要: According to Wikipedia, the well known barber paradox states like this:The barber is the “one who shaves all those, and those only, who do not shave themselves.” The question is, does the barber shave... 阅读全文
posted @ 2018-12-12 22:35 皮波迪博士 阅读(405) 评论(0) 推荐(0) 编辑
摘要: The definition of topological basis for a space $X$ requires that each point $x$ in $X$ is contained in one of the said topological bases. Meanwhile, 阅读全文
posted @ 2018-12-03 22:50 皮波迪博士 阅读(178) 评论(0) 推荐(0) 编辑
摘要: In this article, I’ll present my ideas about how to improve mathematics study, which are the forewords of my handwriting notes on Royden’s “Real Analy 阅读全文
posted @ 2018-08-19 07:19 皮波迪博士 阅读(207) 评论(0) 推荐(0) 编辑
摘要: Make mathematics study a habit with dogged perseverance Don't build mansion on top of loose sand. Concrete a solid foundation by allocating at least o 阅读全文
posted @ 2018-08-12 20:41 皮波迪博士 阅读(232) 评论(0) 推荐(0) 编辑
摘要: Exercise 1. Let \(X\) be a space. Let \(\mathcal{D}\) be a collection of subsets of \(X\) that is maximal with respect to the finite intersection prop 阅读全文
posted @ 2018-05-03 22:56 皮波迪博士 阅读(906) 评论(0) 推荐(0) 编辑
摘要: (Remark: The proof presented in this post is a reorganization and interpretation of that given by James Munkres in his book "Topology".) Theorem 37.3 阅读全文
posted @ 2018-04-27 23:35 皮波迪博士 阅读(462) 评论(0) 推荐(0) 编辑