$$ %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Self-defined math definitions %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Math symbol commands \newcommand{\intd}{\,{\rm d}} % Symbol 'd' used in integration, such as 'dx' \newcommand{\diff}{{\rm d}} % Symbol 'd' used in differentiation \newcommand{\Diff}{{\rm D}} % Symbol 'D' used in differentiation \newcommand{\pdiff}{\partial} % Partial derivative \newcommand{DD}[2]{\frac{\diff}{\diff #2}\left( #1 \right)} \newcommand{Dd}[2]{\frac{\diff #1}{\diff #2}} \newcommand{PD}[2]{\frac{\pdiff}{\pdiff #2}\left( #1 \right)} \newcommand{Pd}[2]{\frac{\pdiff #1}{\pdiff #2}} \newcommand{\rme}{{\rm e}} % Exponential e \newcommand{\rmi}{{\rm i}} % Imaginary unit i \newcommand{\rmj}{{\rm j}} % Imaginary unit j \newcommand{\vect}[1]{\boldsymbol{#1}} % Vector typeset in bold and italic \newcommand{\phs}[1]{\dot{#1}} % Scalar phasor \newcommand{\phsvect}[1]{\boldsymbol{\dot{#1}}} % Vector phasor \newcommand{\normvect}{\vect{n}} % Normal vector: n \newcommand{\dform}[1]{\overset{\rightharpoonup}{\boldsymbol{#1}}} % Vector for differential form \newcommand{\cochain}[1]{\overset{\rightharpoonup}{#1}} % Vector for cochain \newcommand{\bigabs}[1]{\bigg\lvert#1\bigg\rvert} % Absolute value (single big vertical bar) \newcommand{\Abs}[1]{\big\lvert#1\big\rvert} % Absolute value (single big vertical bar) \newcommand{\abs}[1]{\lvert#1\rvert} % Absolute value (single vertical bar) \newcommand{\bignorm}[1]{\bigg\lVert#1\bigg\rVert} % Norm (double big vertical bar) \newcommand{\Norm}[1]{\big\lVert#1\big\rVert} % Norm (double big vertical bar) \newcommand{\norm}[1]{\lVert#1\rVert} % Norm (double vertical bar) \newcommand{\ouset}[3]{\overset{#3}{\underset{#2}{#1}}} % over and under set % Super/subscript for column index of a matrix, which is used in tensor analysis. \newcommand{\cscript}[1]{\;\; #1} % Star symbol used as prefix in front of a paragraph with no indent \newcommand{\prefstar}{\noindent$\ast$ } % Big vertical line restricting the function. % Example: $u(x)\restrict_{\Omega_0}$ \newcommand{\restrict}{\big\vert} % Math operators which are typeset in Roman font \DeclareMathOperator{\sgn}{sgn} % Sign function \DeclareMathOperator{\erf}{erf} % Error function \DeclareMathOperator{\Bd}{Bd} % Boundary of a set, used in topology \DeclareMathOperator{\Int}{Int} % Interior of a set, used in topology \DeclareMathOperator{\rank}{rank} % Rank of a matrix \DeclareMathOperator{\divergence}{div} % Curl \DeclareMathOperator{\curl}{curl} % Curl \DeclareMathOperator{\grad}{grad} % Gradient \DeclareMathOperator{\tr}{tr} % Trace \DeclareMathOperator{\span}{span} % Span $$

止于至善

As regards numerical analysis and mathematical electromagnetism

摘要: Definition (Nowhere dense set) A set $A$ in a topological space $X$ is nowhere dense if the complement of its closure is dense in $X$, i.e. $\overline 阅读全文
posted @ 2020-10-22 12:29 皮波迪博士 阅读(310) 评论(0) 推荐(0) 编辑
摘要: This post summarizes the proof for Theorem 7.9 in Royden's "Real Analysis". Theorem 9 If $\langle X, \rho \rangle$ is an incomplete metric space, it i 阅读全文
posted @ 2020-09-26 17:39 皮波迪博士 阅读(233) 评论(0) 推荐(0) 编辑
摘要: The swapping of integration and taking limit of the integrand, like \(\int \lim_{n \rightarrow \infty} f_n = \lim_{n \rightarrow \infty} \int f_n \), 阅读全文
posted @ 2020-07-19 21:51 皮波迪博士 阅读(167) 评论(0) 推荐(0) 编辑
摘要: This is a mindmap made from my notes for the paper "Principles of boundary element methods", which is written by Martin Costabel. 阅读全文
posted @ 2019-12-25 22:14 皮波迪博士 阅读(235) 评论(0) 推荐(0) 编辑
摘要: This article summarizes the famous Maxwell equations in different forms, namely, time-dependent formulation, time-harmonic formulation and their corre 阅读全文
posted @ 2019-10-03 16:36 皮波迪博士 阅读(265) 评论(0) 推荐(0) 编辑
摘要: This article summarizes a list of existence and uniqueness theorems for variational problems from (Monk 2003), which are organized from simple to comp 阅读全文
posted @ 2019-05-20 21:32 皮波迪博士 阅读(306) 评论(0) 推荐(0) 编辑
摘要: Let $\mathcal{X}$ and $\mathcal{Y}$ be Hilbert spaces. Let $A: \mathcal{X} \rightarrow \mathcal{Y}$ be a bounded and linear operator. Then $$A(\mathca 阅读全文
posted @ 2019-05-18 23:10 皮波迪博士 阅读(209) 评论(0) 推荐(0) 编辑
摘要: 许久以前,我读到了侯捷先生于《深入浅出MFC》一书中所写的“勿在浮砂筑高台”这句话,颇受警醒与启发。如今在工科领域已摸索多年,亦逐渐真切而深刻地认识到,若没有坚实、完整、细致的数学理论作为基石,任何技术工作与所谓的“唯象”理论研究也都无异于浮沙筑台,经不起举一反三的推敲与寻根究底的质疑。而这也像是不 阅读全文
posted @ 2019-04-03 07:12 皮波迪博士 阅读(1417) 评论(0) 推荐(0) 编辑
摘要: Exercise 22.6 Recall that \(\mathbb{R}_{K}\) denotes the real line in the \(K\)-topology. Let \(Y\) be the quotient space obtained from \(\mathbb{R}_K 阅读全文
posted @ 2019-02-24 23:04 皮波迪博士 阅读(741) 评论(0) 推荐(0) 编辑
摘要: In James Munkres "Topology" Section 22, the quotient space is defined as below. Definition Let \(X\) be a topological space, and let \(X^*\) be a part 阅读全文
posted @ 2019-02-17 20:13 皮波迪博士 阅读(304) 评论(0) 推荐(0) 编辑