$$ %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Self-defined math definitions %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Math symbol commands \newcommand{\intd}{\,{\rm d}} % Symbol 'd' used in integration, such as 'dx' \newcommand{\diff}{{\rm d}} % Symbol 'd' used in differentiation \newcommand{\Diff}{{\rm D}} % Symbol 'D' used in differentiation \newcommand{\pdiff}{\partial} % Partial derivative \newcommand{DD}[2]{\frac{\diff}{\diff #2}\left( #1 \right)} \newcommand{Dd}[2]{\frac{\diff #1}{\diff #2}} \newcommand{PD}[2]{\frac{\pdiff}{\pdiff #2}\left( #1 \right)} \newcommand{Pd}[2]{\frac{\pdiff #1}{\pdiff #2}} \newcommand{\rme}{{\rm e}} % Exponential e \newcommand{\rmi}{{\rm i}} % Imaginary unit i \newcommand{\rmj}{{\rm j}} % Imaginary unit j \newcommand{\vect}[1]{\boldsymbol{#1}} % Vector typeset in bold and italic \newcommand{\phs}[1]{\dot{#1}} % Scalar phasor \newcommand{\phsvect}[1]{\boldsymbol{\dot{#1}}} % Vector phasor \newcommand{\normvect}{\vect{n}} % Normal vector: n \newcommand{\dform}[1]{\overset{\rightharpoonup}{\boldsymbol{#1}}} % Vector for differential form \newcommand{\cochain}[1]{\overset{\rightharpoonup}{#1}} % Vector for cochain \newcommand{\bigabs}[1]{\bigg\lvert#1\bigg\rvert} % Absolute value (single big vertical bar) \newcommand{\Abs}[1]{\big\lvert#1\big\rvert} % Absolute value (single big vertical bar) \newcommand{\abs}[1]{\lvert#1\rvert} % Absolute value (single vertical bar) \newcommand{\bignorm}[1]{\bigg\lVert#1\bigg\rVert} % Norm (double big vertical bar) \newcommand{\Norm}[1]{\big\lVert#1\big\rVert} % Norm (double big vertical bar) \newcommand{\norm}[1]{\lVert#1\rVert} % Norm (double vertical bar) \newcommand{\ouset}[3]{\overset{#3}{\underset{#2}{#1}}} % over and under set % Super/subscript for column index of a matrix, which is used in tensor analysis. \newcommand{\cscript}[1]{\;\; #1} % Star symbol used as prefix in front of a paragraph with no indent \newcommand{\prefstar}{\noindent$\ast$ } % Big vertical line restricting the function. % Example: $u(x)\restrict_{\Omega_0}$ \newcommand{\restrict}{\big\vert} % Math operators which are typeset in Roman font \DeclareMathOperator{\sgn}{sgn} % Sign function \DeclareMathOperator{\erf}{erf} % Error function \DeclareMathOperator{\Bd}{Bd} % Boundary of a set, used in topology \DeclareMathOperator{\Int}{Int} % Interior of a set, used in topology \DeclareMathOperator{\rank}{rank} % Rank of a matrix \DeclareMathOperator{\divergence}{div} % Curl \DeclareMathOperator{\curl}{curl} % Curl \DeclareMathOperator{\grad}{grad} % Gradient \DeclareMathOperator{\tr}{tr} % Trace \DeclareMathOperator{\span}{span} % Span $$

止于至善

As regards numerical analysis and mathematical electromagnetism

Schur complement for inverting block matrices

Let \(M\) be regular (i.e. invertible, as defined in Hackbusch's book [Hie]) and \(M = \left( \begin{array}{cc} M_{11} & M_{12}\\ M_{21} & M_{22} \end{array} \right)\). To calculate the inverse of \(M\), perform the standard manual procedures as below.

 

Definition (Schur complement) $S := M_{22} - M_{21} M_{11}^{-1}M_{12}$ is the Schur complement of $M_{11}$ in $M$.

Remark The system matrix \(M\) obtained from FEM may not be positive definite. The solution of the whole problem should be split into smaller ones.

\(\displaystyle \left( \begin{array}{cc} M_{11} & M_{12}\\ M_{21} & M_{22} \end{array} \right) \left( \begin{array}{c} x_1\\ x_2 \end{array} \right) = \left( \begin{array}{c} b_1\\ b_2 \end{array} \right) \Longleftrightarrow \left( \begin{array}{cc} M_{11} & M_{12}\\ 0 & S \end{array} \right) \left( \begin{array}{c} x_1\\ x_2 \end{array} \right) = \left( \begin{array}{c} b_1\\ - M_{21} M_{11}^{- 1} b_1 + b_2 \end{array} \right) .\)

Then we have \(x_2 = S^{- 1} (- M_{21} M_{11}^{- 1} b_1 + b_2)\) and \(x_1 = M_{11}^{- 1} (b_1 - M_{12} x_2)\).

Comment The Schur complement method for inverting a block matrix bears the same spirit as that for solving the equations of first degree in two variables.

posted @ 2022-02-04 14:15  皮波迪博士  阅读(35)  评论(0编辑  收藏  举报