$$ %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Self-defined math definitions %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Math symbol commands \newcommand{\intd}{\,{\rm d}} % Symbol 'd' used in integration, such as 'dx' \newcommand{\diff}{{\rm d}} % Symbol 'd' used in differentiation \newcommand{\Diff}{{\rm D}} % Symbol 'D' used in differentiation \newcommand{\pdiff}{\partial} % Partial derivative \newcommand{DD}[2]{\frac{\diff}{\diff #2}\left( #1 \right)} \newcommand{Dd}[2]{\frac{\diff #1}{\diff #2}} \newcommand{PD}[2]{\frac{\pdiff}{\pdiff #2}\left( #1 \right)} \newcommand{Pd}[2]{\frac{\pdiff #1}{\pdiff #2}} \newcommand{\rme}{{\rm e}} % Exponential e \newcommand{\rmi}{{\rm i}} % Imaginary unit i \newcommand{\rmj}{{\rm j}} % Imaginary unit j \newcommand{\vect}[1]{\boldsymbol{#1}} % Vector typeset in bold and italic \newcommand{\phs}[1]{\dot{#1}} % Scalar phasor \newcommand{\phsvect}[1]{\boldsymbol{\dot{#1}}} % Vector phasor \newcommand{\normvect}{\vect{n}} % Normal vector: n \newcommand{\dform}[1]{\overset{\rightharpoonup}{\boldsymbol{#1}}} % Vector for differential form \newcommand{\cochain}[1]{\overset{\rightharpoonup}{#1}} % Vector for cochain \newcommand{\bigabs}[1]{\bigg\lvert#1\bigg\rvert} % Absolute value (single big vertical bar) \newcommand{\Abs}[1]{\big\lvert#1\big\rvert} % Absolute value (single big vertical bar) \newcommand{\abs}[1]{\lvert#1\rvert} % Absolute value (single vertical bar) \newcommand{\bignorm}[1]{\bigg\lVert#1\bigg\rVert} % Norm (double big vertical bar) \newcommand{\Norm}[1]{\big\lVert#1\big\rVert} % Norm (double big vertical bar) \newcommand{\norm}[1]{\lVert#1\rVert} % Norm (double vertical bar) \newcommand{\ouset}[3]{\overset{#3}{\underset{#2}{#1}}} % over and under set % Super/subscript for column index of a matrix, which is used in tensor analysis. \newcommand{\cscript}[1]{\;\; #1} % Star symbol used as prefix in front of a paragraph with no indent \newcommand{\prefstar}{\noindent$\ast$ } % Big vertical line restricting the function. % Example: $u(x)\restrict_{\Omega_0}$ \newcommand{\restrict}{\big\vert} % Math operators which are typeset in Roman font \DeclareMathOperator{\sgn}{sgn} % Sign function \DeclareMathOperator{\erf}{erf} % Error function \DeclareMathOperator{\Bd}{Bd} % Boundary of a set, used in topology \DeclareMathOperator{\Int}{Int} % Interior of a set, used in topology \DeclareMathOperator{\rank}{rank} % Rank of a matrix \DeclareMathOperator{\divergence}{div} % Curl \DeclareMathOperator{\curl}{curl} % Curl \DeclareMathOperator{\grad}{grad} % Gradient \DeclareMathOperator{\tr}{tr} % Trace \DeclareMathOperator{\span}{span} % Span $$

止于至善

As regards numerical analysis and mathematical electromagnetism

Convergence theorems for measurable functions

The swapping of integration and taking limit of the integrand, like \(\int \lim_{n \rightarrow \infty} f_n = \lim_{n \rightarrow \infty} \int f_n \), is usually taken for granted as a valid operation in engineering courses. However, if we require mathematical rigorousness, such manipulation relies on additional constraints in order to be feasible. This is governed by a set of convergence theorems about measurable functions. By referring to Halsey Royden's "Real Analysis (3th ed., 2004)", this article compiles these theorems to present an overview of their similarities and differences.

Let \(\{f_n\}_{n \geq 1}\) be a sequence of measurable functions defined on a measurable set \(E\). The measure of \(E\) is \({\rm m}(E)\). Let \(g\) be integrable on \(E\) and \(\{g_n\}_{n \geq 1}\) be a sequence of integrable functions which converges a.e. to \(g\). The integrals in the following are in the sense of Lebesgue integral.

Theorem

Requirements on

$$\{f_n\}_{n \geq 1}$$

$${\rm m}(E)$$

Convergence of
$$\{f_n\}_{n \geq 1}$$

Boundedness of
$$\{f_n\}_{n \geq 1}$$

Swapping of integration
and taking limit
Bounded
convergence
theorem
Measurable $${\rm m}(E)\in [0, \infty)$$ $f_n \rightarrow f$ on $E$ $$\abs{f_n(x)} \leq M$$ \[\displaystyle{\int_E f = \lim_{n \rightarrow \infty} \int_E f_n}\]
Fatou's
Lemma
1. Measurable
2. Nonnegative
$${\rm m}(E) \in [0,\infty]$$ $f_n \rightarrow f$ a.e. on $E$ None \[\displaystyle{\int_E f \leq \underline \lim\int_E f_n}\]
Monotone
convergence
theorem
1. Measurable
2. Nonnegative
3. Increasing
$${\rm m}(E) \in [0,\infty]$$ $f_n \rightarrow f$ a.e. on $E$ None \[\displaystyle{\int_E f = \lim_{n \rightarrow \infty} \int_E f_n}\]
Lebesgue
convergence
theorem
Measurable $${\rm m}(E) \in [0,\infty]$$ $f_n \rightarrow f$ a.e. on $E$ 1. $\abs{f_n} \leq g$
2. $\int_E g < \infty$
\[\displaystyle{\int_E f = \lim_{n \rightarrow \infty} \int_E f_n}\]
Extended
Lebesgue
convergence
theorem
Measurable $${\rm m}(E) \in [0,\infty]$$ $f_n \rightarrow f$ a.e. on $E$ 1. $\abs{f_n} \leq g_n$
2. $\int_E g_n < \infty$
3. $g_n \rightarrow g$ a.e. on $E$
4. $\int_E g < \infty$
5. $\int_E g = \lim_{n \rightarrow \infty} \int_E g_n$
\[\displaystyle{\int_E f = \lim_{n \rightarrow \infty} \int_E f_n}\]
posted @ 2020-07-19 21:51  皮波迪博士  阅读(167)  评论(0编辑  收藏  举报