poj 2653 线段相交
题意:一堆线段依次放在桌子上,上面的线段会压住下面的线段,求找出没被压住的线段。
sol:从下向上找,如果发现上面的线段与下面的相交,说明被压住了。break掉
其实这是个n^2的算法,但是题目已经说了没被压住的线段不超过1000个,所以不会爆
1 #include<math.h> 2 #include <stdio.h> 3 #include <string.h> 4 5 bool ans[100100]; 6 int n; 7 double X1,X2,Y1,Y2; 8 9 #define eps 1e-8 10 #define PI acos(-1.0)//3.14159265358979323846 11 //判断一个数是否为0,是则返回true,否则返回false 12 #define zero(x)(((x)>0?(x):-(x))<eps) 13 //返回一个数的符号,正数返回1,负数返回2,否则返回0 14 #define _sign(x)((x)>eps?1:((x)<-eps?2:0)) 15 16 struct point 17 { 18 double x,y; 19 point(){} 20 point(double xx,double yy):x(xx),y(yy) 21 {} 22 }; 23 24 struct line 25 { 26 point a,b; 27 line(){} //默认构造函数 28 line(point ax,point bx):a(ax),b(bx) 29 {} 30 }l[100100]; 31 32 //求矢量[p0,p1],[p0,p2]的叉积 //p0是顶点 33 //若结果等于0,则这三点共线 //若结果大于0,则p0p2在p0p1的逆时针方向 //若结果小于0,则p0p2在p0p1的顺时针方向 34 double xmult(point p1,point p2,point p0) 35 { 36 return(p1.x-p0.x)*(p2.y-p0.y)-(p2.x-p0.x)*(p1.y-p0.y); 37 } 38 //计算dotproduct(P1-P0).(P2-P0) 39 double dmult(point p1,point p2,point p0) 40 { 41 return(p1.x-p0.x)*(p2.x-p0.x)+(p1.y-p0.y)*(p2.y-p0.y); 42 } 43 //两点距离 44 double distance(point p1,point p2) 45 { 46 return sqrt((p1.x-p2.x)*(p1.x-p2.x)+(p1.y-p2.y)*(p1.y-p2.y)); 47 } 48 //判三点共线 49 int dots_inline(point p1,point p2,point p3) 50 { 51 return zero(xmult(p1,p2,p3)); 52 } 53 //判点是否在线段上,包括端点 54 int dot_online_in(point p,line l) 55 { 56 return zero(xmult(p,l.a,l.b))&&(l.a.x-p.x)*(l.b.x-p.x)<eps&&(l.a.y-p.y)*(l.b.y-p.y)<eps; 57 } 58 //判点是否在线段上,不包括端点 59 int dot_online_ex(point p,line l) 60 { 61 return dot_online_in(p,l)&&(!zero(p.x-l.a.x)||!zero(p.y-l.a.y))&&(!zero(p.x-l.b.x)||!zero(p.y-l.b.y)); 62 } 63 //判两点在线段同侧,点在线段上返回0 64 int same_side(point p1,point p2,line l) 65 { 66 return xmult(l.a,p1,l.b)*xmult(l.a,p2,l.b)>eps; 67 } 68 //判两线段相交,包括端点和部分重合 69 int intersect_in(line u,line v) 70 { 71 if(!dots_inline(u.a,u.b,v.a)||!dots_inline(u.a,u.b,v.b)) 72 return!same_side(u.a,u.b,v)&&!same_side(v.a,v.b,u); 73 return dot_online_in(u.a,v)||dot_online_in(u.b,v)||dot_online_in(v.a,u)||dot_online_in(v.b,u); 74 } 75 76 int main() 77 { 78 while (scanf("%d",&n)) 79 { 80 if (n==0) break; 81 memset(ans,false,sizeof(ans)); 82 for (int i=1;i<=n;i++) 83 { 84 //cin>>X1>>Y1>>X2>>Y2; 85 scanf("%lf%lf%lf%lf",&X1,&Y1,&X2,&Y2); 86 l[i]=line(point(X1,Y1),point(X2,Y2)); 87 ans[i]=true; 88 } 89 90 for (int i=1;i<=n-1;i++) 91 { 92 int j=i+1; 93 while (j<=n) 94 { 95 line l1=l[i],l2=l[j]; 96 if (intersect_in(l1,l2)!=0) 97 { 98 ans[i]=false; 99 break; 100 } 101 j++; 102 } 103 } 104 //Top sticks: 2, 4, 5. 105 int ANS[1010]; 106 int nm=0; 107 for (int i=1;i<=n;i++) 108 if (ans[i]) 109 { 110 nm++; 111 ANS[nm]=i; 112 } 113 printf("Top sticks: "); 114 for (int i=1;i<nm;i++) 115 printf("%d, ",ANS[i]); 116 printf("%d.\n",ANS[nm]); 117 } 118 return 0; 119 }
posted on 2014-12-11 21:11 Pentium.Labs 阅读(200) 评论(0) 编辑 收藏 举报