Problem Description
A simple mathematical formula for e is
where n is allowed to go to infinity. This can actually yield very accurate approximations of e using relatively small values of n.
Output
Output the approximations of e generated by the above formula for the values of n from 0 to 9. The beginning of your output should appear similar to that shown below.
Sample Output
n e
- -----------
0 1
1 2
2 2.5
3 2.666666667
4 2.708333333
#include<stdio.h>
int main()
{
double sum,t,e,i,j,n;
printf("n e\n- -----------\n0 1\n1 2\n2 2.5\n");
t=2;
sum=2.5;
for(i=3;i<=9;i++)
{
t*=i;
sum+=1/t;
e=sum;
printf("%d %.9lf\n",(int)i,e);
}
return 0;
}
n e
- -----------
0 1
1 2
2 2.5
3 2.666666667
4 2.708333333
5 2.716666667
6 2.718055556
7 2.718253968
8 2.718278770
9 2.718281526
#include<stdio.h> void main() { int n,i; double sum,t; printf("n e\n"); printf("- -----------\n"); printf("0 1\n1 2\n2 2.5\n"); sum=2.5; for(n=3;n<10;n++) { t=1.0; for(i=2;i<=n;i++) t*=1.0/i; sum+=t; printf("%d %.9f\n",n,sum); } }