PCB genesis 大孔扩孔(不用G84命令)实现方法

PCB钻孔时,当钻刀>6.3mm时,超出钻孔范围,钻孔工序是没有这么大的钻刀,当这种情况,工程CAM会都采用G84命令用小孔扩孔的方式制作, 在这里介绍一种如果不用G84命令,用程序实现将大孔生成小孔钻孔达到扩孔的目的。

一.我们先了解一下G84命令扩孔

   孔尺寸大小

      孔密度

连一篇文章有关于孔数计算方式:  https://www.cnblogs.com/pcbren/p/9379178.html

二.求解思路

     1.通过孔密度,求出孔与孔中心距离

     2.求出单次增量方位角

     3.以大孔中心为,长度为(大孔半径-小孔半径), 任选择一个方位角作为起始方位角,并增加一个起始孔,并围绕这个起始方位角不断递增方位角,直到360度递增完成后即结束。

三.C#简易代码实现:

1.扩孔钻孔代码

            string drilllayer = "drl";
            gLayer layer = g.getFEATURES($"{drilllayer}", g.STEP, g.JOB, "mm", true);
            List<gPP> pList = new List<gPP>();

            double HoleSize = 3175;  //扩孔所用钻刀大小
            foreach (var pad in layer.Plist)
            {
                if (pad.width > 6300)  //钻孔>6300需扩孔
                {
                    gA arc = calc2.p_2A(new gP(pad.p, pad.width - HoleSize));
                    arc.width = HoleSize;
                    var HoleCenterDi = calc2.p_Convex(arc.width * 0.0005)*3;
                    pList.AddRange(calc2.a_2Plist(arc, HoleCenterDi, 2, true));
                }
            }
            addCOM.pad(pList);
View Code

2.计算函数

/// <summary>
        /// 通过孔半径与凸高位求  孔中心距
        /// </summary>
        /// <param name="Rradius">孔半径</param>
        /// <param name="tol_">凸位高度值</param>
        /// <returns></returns>
        public double p_Convex(double Rradius, double tol_ = 0.0127)
        {
            return Math.Sqrt(Math.Pow(Rradius, 2) - Math.Pow(Rradius - tol_, 2)) * 2;
        }
        /// <summary>
        /// 求方位角
        /// </summary>
        /// <param name="ps"></param>
        /// <param name="pe"></param>
        /// <returns></returns>
        public double p_ang(gPoint ps, gPoint pe)
        {
            double a_ang = Math.Atan((pe.y - ps.y) / (pe.x - ps.x)) / Math.PI * 180;
            //象限角  转方位角   计算所属象限   并求得方位角
            if (pe.x >= ps.x && pe.y >= ps.y)  //↗    第一象限
            {
                return a_ang;
            }
            else if (!(pe.x >= ps.x) && pe.y >= ps.y)  // ↖   第二象限
            {
                return a_ang + 180;
            }
            else if (!(pe.x >= ps.x) && !(pe.y >= ps.y))  //↙   第三象限
            {
                return a_ang + 180;
            }
            else if (pe.x >= ps.x && !(pe.y >= ps.y))  // ↘   第四象限
            {
                return a_ang + 360;
            }
            else
            {
                return a_ang;
            }
        }//求方位角
        /// <summary>
        /// 求增量坐标
        /// </summary>
        /// <param name="ps">起点</param>
        /// <param name="val">增量值</param>
        /// <param name="ang_direction">角度</param>
        /// <returns></returns>
        public gPP p_val_ang(gPP ps, double val, double ang_direction)
        {
            gPP pe = ps;
            pe.p.x = ps.p.x + val * Math.Cos(ang_direction * Math.PI / 180);
            pe.p.y = ps.p.y + val * Math.Sin(ang_direction * Math.PI / 180);
            return pe;
        }
        /// <summary>
        /// 弧Arc 转点P组集
        /// </summary>
        /// <param name="a"></param>
        /// <param name="val_">此数值表示:分段数值</param>
        /// <param name="type_">代表值数值类型 【0】弧长 【1】角度  【2】弦长 </param>
        /// <param name="is_avg">是否平均分布 </param>
        /// <returns></returns>
        public List<gPP> a_2Plist(gA a, double val_ = 0.1d, int type_ = 0, bool is_avg = false)
        {
            List<gPP> list_point = new List<gPP>();
            gPP tempP;
            tempP.p = a.ps;
            tempP.symbols = a.symbols;
            tempP.width = a.width;
            list_point.Add(tempP);

            double avg_count;
            double angle_val = 0;
            double rad_ = p2p_di(a.pc, a.pe);
            double sum_alge = a_Angle(a);
            if (type_ == 1)  //    【1】角度  
            {
                angle_val = val_;
                avg_count = (int)(Math.Ceiling(sum_alge / angle_val)) - 1;  //  总角度/单角度
            }
            else if (type_ == 2)  //【2】弦长
            {
                angle_val = Math.Asin(val_ / (rad_ * 2)) * 360 / pi;
                avg_count = (int)(Math.Ceiling(sum_alge / angle_val)) - 1;  //  总角度/单角度
            }
            else  //                【0】弧长 
            {
                angle_val = val_ * 180 / (pi * rad_);
                avg_count = (int)(Math.Ceiling(sum_alge / angle_val)) - 1;  //  总角度/单角度
                //avg_count = (int)(Math.Ceiling(a_Lenght(a) / val_)) - 1;  //  或  总弧长/单弧长
            }
            if (is_avg)
                angle_val = sum_alge / avg_count;
            if (avg_count > 1)
            {
                gPP centerP = tempP;
                centerP.p = a.pc;
                double angle_s = p_ang(a.pc, a.ps);
                if (a.ccw) { angle_val = 0 - angle_val; }
                for (int i = 1; i < avg_count; i++)
                {
                    tempP = p_val_ang(centerP, rad_, angle_s - angle_val * i);
                    list_point.Add(tempP);
                }
            }
            if (!(zero(a.ps.x - a.pe.x) && zero(a.ps.y - a.pe.y)))
            {
                tempP.p = a.pe;
                list_point.Add(tempP);
            }
            return list_point;
        }
        /// <summary>
        /// 返回两点之间欧氏距离
        /// </summary>
        /// <param name="p1"></param>
        /// <param name="p2"></param>
        /// <returns></returns>
        public double p2p_di(gPoint p1, gPoint p2)
        {
            return Math.Sqrt((p1.x - p2.x) * (p1.x - p2.x) + (p1.y - p2.y) * (p1.y - p2.y));
        }
        /// <summary>
        /// 求弧Arc圆心角       //后续改进  用叉积 与3P求角度求解  验证哪个效率高
        /// </summary>
        /// <param name="a"></param>
        /// <returns></returns>
        public double a_Angle(gA a)
        {
            double angle_s, angle_e, angle_sum;
            if (a.ccw)
            {
                angle_s = p_ang(a.pc, a.pe);
                angle_e = p_ang(a.pc, a.ps);
            }
            else
            {
                angle_s = p_ang(a.pc, a.ps);
                angle_e = p_ang(a.pc, a.pe);
            }
            if (angle_s == 360) { angle_s = 0; }
            if (angle_e >= angle_s)
                angle_sum = 360 - Math.Abs(angle_s - angle_e);
            else
                angle_sum = Math.Abs(angle_s - angle_e);
            return angle_sum;
        }
        /// <summary>
        ///  检查值决对值 小于 (eps = 0.001)    浮点误差处理
        /// </summary>
        /// <param name="x"></param>
        /// <returns></returns>
        public bool zero(double x)
        {
            return (((x) > 0 ? (x) : (-x)) < eps);
        }
View Code

3.Point,PAD,Arc数据结构

/// <summary>
    /// 精简 PAD  数据类型
    /// </summary>
    public struct gPP
    {
        public gPP(double x_val, double y_val, double width_)
        {
            this.p = new gPoint(x_val, y_val);
            this.symbols = "r";
            this.width = width_;
        }
        public gPP(gPoint p_, double width_)
        {
            this.p = p_;
            this.symbols = "r";
            this.width = width_;
        }
        public gPP(gPoint p_, string symbols_, double width_)
        {
            this.p = p_;
            this.symbols = symbols_;
            this.width = width_;
        }
        public gPoint p;
        public string symbols;
        public double width;
        public static gPP operator +(gPP p1, gPP p2)
        {
            p1.p += p2.p;
            return p1;
        }
        public static gPP operator +(gPP p1, gPoint p2)
        {
            p1.p += p2;
            return p1;
        }
        public static gPP operator -(gPP p1, gPP p2)
        {
            p1.p -= p2.p;
            return p1;
        }
        public static gPP operator -(gPP p1, gPoint p2)
        {
            p1.p -= p2;
            return p1;
        }
    }
    /// <summary>
    /// 点  数据类型 (XY)
    /// </summary>
    public struct gPoint
    {
        public gPoint(gPoint p_)
        {
            this.x = p_.x;
            this.y = p_.y;
        }
        public gPoint(double x_val, double y_val)
        {
            this.x = x_val;
            this.y = y_val;
        }
        public double x;
        public double y;
        public static gPoint operator +(gPoint p1, gPoint p2)
        {
            p1.x += p2.x;
            p1.y += p2.y;
            return p1;
        }
        public static gPoint operator -(gPoint p1, gPoint p2)
        {
            p1.x -= p2.x;
            p1.y -= p2.y;
            return p1;
        }
    }
    /// <summary>
    /// ARC 数据类型
    /// </summary>
    public struct gA
    {
        public gA(double ps_x, double ps_y, double pc_x, double pc_y, double pe_x, double pe_y, double width_, bool ccw_)
        {
            this.ps = new gPoint(ps_x, ps_y);
            this.pc = new gPoint(pc_x, pc_y);
            this.pe = new gPoint(pe_x, pe_y);
            this.negative = false;
            this.ccw = ccw_;
            this.symbols = "r";
            this.attribut = string.Empty;
            this.width = width_;
        }
        public gA(gPoint ps_, gPoint pc_, gPoint pe_, double width_, bool ccw_ = false)
        {
            this.ps = ps_;
            this.pc = pc_;
            this.pe = pe_;
            this.negative = false;
            this.ccw = ccw_;
            this.symbols = "r";
            this.attribut = string.Empty;
            this.width = width_;
        }
        public gPoint ps;
        public gPoint pe;
        public gPoint pc;
        public bool negative;//polarity-- positive  negative
        public bool ccw; //direction-- cw ccw
        public string symbols;
        public string attribut;
        public double width;
        public static gA operator +(gA arc1, gPoint move_p)
        {
            arc1.ps += move_p;
            arc1.pe += move_p;
            arc1.pc += move_p;
            return arc1;
        }
        public static gA operator +(gA arc1, gP move_p)
        {
            arc1.ps += move_p.p;
            arc1.pe += move_p.p;
            arc1.pc += move_p.p;
            return arc1;
        }
        public static gA operator -(gA arc1, gPoint move_p)
        {
            arc1.ps -= move_p;
            arc1.pe -= move_p;
            arc1.pc -= move_p;
            return arc1;
        }
        public static gA operator -(gA arc1, gP move_p)
        {
            arc1.ps -= move_p.p;
            arc1.pe -= move_p.p;
            arc1.pc -= move_p.p;
            return arc1;
        }
    }
View Code

四.实现效果

posted @ 2018-11-30 22:31  pcbren  阅读(3096)  评论(1编辑  收藏  举报