#include <iostream>
#include <complex>
#include <cstdio>
#include <cmath>
const int mx_n = 4e5 + 10;
const double pi = acos(-1.0);
#define rep(i, s, t) for(register int i = s; i <= t; ++i)
using namespace std;
typedef complex<double> LF;
void DFT(LF *p, int n, int f) {
if(n == 1) return ;
n >>= 1;
LF p0[n], p1[n];
rep(i, 0, n-1) p0[i] = p[i<<1], p1[i] = p[i<<1|1];
DFT(p0, n, f), DFT(p1, n, f);
LF e(1, 0), w(cos(2*pi/(n<<1)), f*sin(2*pi/(n<<1)));
rep(i, 0, n-1) {
p[i] = p0[i] + e * p1[i];
p[i+n] = p0[i] - e * p1[i];
e = e * w;
}
}
int n, m;
LF a[mx_n], b[mx_n], c[mx_n];
int main() {
#ifndef ONLINE_JUDGE
freopen("input.in", "r", stdin);
freopen("res.out", "w", stdout);
#endif
scanf("%d%d", &n, &m);
rep(i, 0, n) scanf("%lf", &a[i]);
rep(i, 0, m) scanf("%lf", &b[i]);
int N = 1;
for(; N <= n + m; N <<= 1);
DFT(a, N, 1), DFT(b, N, 1);
rep(i, 0, N-1) c[i] = a[i] * b[i];
DFT(c, N, -1);
rep(i, 0, n + m)
printf("%d%c", (int)(c[i].real()/N + 0.5), i ^ (n+m)? ' ':'\n');
return 0;
}