Python学习 Day13 Python 面向对象学习2:@property、多重继承、定制类、枚举类

Python中使用@property(Python内置的@property装饰器就是负责把一个方法变成属性调用的)

在绑定属性时,如果我们直接把属性暴露出去,虽然写起来很简单,但是,没办法检查参数,导致可以把成绩随便改:

s = Student()
s.score = 9999

这显然不合逻辑。为了限制score的范围,可以通过一个set_score()方法来设置成绩,再通过一个get_score()来获取成绩,这样,在set_score()方法里,就可以检查参数:

class Student(object):

    def get_score(self):
         return self._score

    def set_score(self, value):
        if not isinstance(value, int):
            raise ValueError('score must be an integer!')
        if value < 0 or value > 100:
            raise ValueError('score must between 0 ~ 100!')
        self._score = value

现在,对任意的Student实例进行操作,就不能随心所欲地设置score了:

>>> s = Student()
>>> s.set_score(60) # ok!
>>> s.get_score()
60
>>> s.set_score(9999)
Traceback (most recent call last):
  ...
ValueError: score must between 0 ~ 100!

但是,上面的调用方法又略显复杂,没有直接用属性这么直接简单。

有没有既能检查参数,又可以用类似属性这样简单的方式来访问类的变量呢?对于追求完美的Python程序员来说,这是必须要做到的!

还记得装饰器(decorator)可以给函数动态加上功能吗?对于类的方法,装饰器一样起作用。Python内置的@property装饰器就是负责把一个方法变成属性调用的

class Student(object):

    @property
    def score(self):
        return self._score

    @score.setter
    def score(self, value):
        if not isinstance(value, int):
            raise ValueError('score must be an integer!')
        if value < 0 or value > 100:
            raise ValueError('score must between 0 ~ 100!')
        self._score = value

@property的实现比较复杂,我们先考察如何使用。把一个getter方法变成属性,只需要加上@property就可以了,此时,@property本身又创建了另一个装饰器@score.setter,负责把一个setter方法变成属性赋值,于是,我们就拥有一个可控的属性操作:

>>> s = Student()
>>> s.score = 60 # OK,实际转化为s.set_score(60)
>>> s.score # OK,实际转化为s.get_score()
60
>>> s.score = 9999
Traceback (most recent call last):
  ...
ValueError: score must between 0 ~ 100!

注意到这个神奇的@property,我们在对实例属性操作的时候,就知道该属性很可能不是直接暴露的,而是通过getter和setter方法来实现的。

还可以定义只读属性,只定义getter方法,不定义setter方法就是一个只读属性

class Student(object):

    @property
    def birth(self):
        return self._birth

    @birth.setter
    def birth(self, value):
        self._birth = value

    @property
    def age(self):
        return 2015 - self._birth

上面的birth可读写属性,而age就是一个只读属性,因为age可以根据birth和当前时间计算出来。

小结

@property广泛应用在类的定义中,可以让调用者写出简短的代码,同时保证对参数进行必要的检查,这样,程序运行时就减少了出错的可能性。

Python 多重继承(Mixin模式)

像C或C++这类语言都支持多重继承,一个子类可以有多个父类,这样的设计常被人诟病。因为继承应该是个”is-a”关系。比如轿车类继承交通工具类,因为轿车是一个(“is-a”)交通工具。一个物品不可能是多种不同的东西,因此就不应该存在多重继承。不过有没有这种情况,一个类的确是需要继承多个类呢?

答案是有,我们还是拿交通工具来举例子,民航飞机是一种交通工具,对于土豪们来说直升机也是一种交通工具。对于这两种交通工具,它们都有一个功能是飞行,但是轿车没有。所以,我们不可能将飞行功能写在交通工具这个父类中。但是如果民航飞机和直升机都各自写自己的飞行方法,又违背了代码尽可能重用的原则(如果以后飞行工具越来越多,那会出现许多重复代码)。怎么办,那就只好让这两种飞机同时继承交通工具以及飞行器两个父类,这样就出现了多重继承。这时又违背了继承必须是”is-a”关系。这个难题该怎么破?

不同的语言给出了不同的方法,让我们先来看下Java。Java提供了接口interface功能,来实现多重继承

public abstract class Vehicle {
}
 
public interface Flyable {
    public void fly();
}
 
public class FlyableImpl implements Flyable {
    public void fly() {
        System.out.println("I am flying");
    }
}
 
public class Airplane extends Vehicle implements Flyable {
    private flyable;
 
    public Airplane() {
        flyable = new FlyableImpl();
    }
 
    public void fly() {
        flyable.fly();
    }
}

现在我们的飞机同时具有了交通工具及飞行器两种属性,而且我们不需要重写飞行器中的飞行方法,同时我们没有破坏单一继承的原则。飞机就是一种交通工具,可飞行的能力是是飞机的属性,通过继承接口来获取。

回到主题,Python语言可没有接口功能,但是它可以多重继承。那Python是不是就该用多重继承来实现呢?是,也不是。说是,因为从语法上看,的确是通过多重继承实现的。说不是,因为它的继承依然遵守”is-a”关系,从含义上看依然遵循单继承的原则。这个怎么理解呢?我们还是看例子吧。

class Vehicle(object):
    pass
 
class PlaneMixin(object):
    def fly(self):
        print 'I am flying'
 
class Airplane(Vehicle, PlaneMixin):
    pass

可以看到,上面的Airplane类实现了多继承,不过它继承的第二个类我们起名为PlaneMixin,而不是Plane,这个并不影响功能,但是会告诉后来读代码的人,这个类是一个Mixin类。所以从含义上理解,Airplane只是一个Vehicle,不是一个Plane。这个Mixin,表示混入(mix-in),它告诉别人,这个类是作为功能添加到子类中,而不是作为父类,它的作用同Java中的接口。

使用Mixin类实现多重继承要非常小心

  • 首先它必须表示某一种功能,而不是某个物品,如同Java中的Runnable,Callable等
  • 其次它必须责任单一,如果有多个功能,那就写多个Mixin类
  • 然后,它不依赖于子类的实现
  • 最后,子类即便没有继承这个Mixin类,也照样可以工作,就是缺少了某个功能。(比如飞机照样可以载客,就是不能飞了^_^)

另外提一下,ReactJS也有Mixin功能,而且语法很简洁:

var PlaneMixin = function() {
  return {
    fly: function() {
      console.log('I am flying');
    }
  }
}
 
var AirplaneComponent = React.createClass({
  mixins: [PlaneMixin()],
  render: function() {
    return '<h1>Hello</h1>';
  }
});

定制类

看到类似__slots__这种形如__xxx__的变量或者函数名就要注意,这些在Python中是有特殊用途的。

__slots__我们已经知道怎么用了,__len__()方法我们也知道是为了能让class作用于len()函数。

除此之外,Python的class中还有许多这样有特殊用途的函数,可以帮助我们定制类。

__str__

我们先定义一个Student类,打印一个实例:

>>> class Student(object):
...     def __init__(self, name):
...         self.name = name
...
>>> print(Student('Michael'))
<__main__.Student object at 0x109afb190>

打印出一堆<__main__.Student object at 0x109afb190>,不好看。

怎么才能打印得好看呢?只需要定义好__str__()方法,返回一个好看的字符串就可以了:

>>> class Student(object):
...     def __init__(self, name):
...         self.name = name
...     def __str__(self):
...         return 'Student object (name: %s)' % self.name
...
>>> print(Student('Michael'))
Student object (name: Michael)

这样打印出来的实例,不但好看,而且容易看出实例内部重要的数据。

但是细心的朋友会发现直接敲变量不用print,打印出来的实例还是不好看:

>>> s = Student('Michael')
>>> s
<__main__.Student object at 0x109afb310>

这是因为直接显示变量调用的不是__str__(),而是__repr__(),两者的区别是__str__()返回用户看到的字符串,而__repr__()返回程序开发者看到的字符串,也就是说,__repr__()是为调试服务的。

解决办法是再定义一个__repr__()。但是通常__str__()__repr__()代码都是一样的,所以,有个偷懒的写法:

class Student(object):
    def __init__(self, name):
        self.name = name
    def __str__(self):
        return 'Student object (name=%s)' % self.name
    __repr__ = __str__

__iter__

如果一个类想被用于for ... in循环,类似list或tuple那样,就必须实现一个__iter__()方法,该方法返回一个迭代对象,然后,Python的for循环就会不断调用该迭代对象的__next__()方法拿到循环的下一个值,直到遇到StopIteration错误时退出循环。

我们以斐波那契数列为例,写一个Fib类,可以作用于for循环:

class Fib(object):
    def __init__(self):
        self.a, self.b = 0, 1 # 初始化两个计数器a,b

    def __iter__(self):
        return self # 实例本身就是迭代对象,故返回自己

    def __next__(self):
        self.a, self.b = self.b, self.a + self.b # 计算下一个值
        if self.a > 100000: # 退出循环的条件
            raise StopIteration()
        return self.a # 返回下一个值

现在,试试把Fib实例作用于for循环:

>>> for n in Fib():
...     print(n)
...
1
1
2
3
5
...
46368
75025

__getitem__

Fib实例虽然能作用于for循环,看起来和list有点像,但是,把它当成list来使用还是不行,比如,取第5个元素:

>>> Fib()[5]
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
TypeError: 'Fib' object does not support indexing

要表现得像list那样按照下标取出元素,需要实现__getitem__()方法:

class Fib(object):
    def __getitem__(self, n):
        a, b = 1, 1
        for x in range(n):
            a, b = b, a + b
        return a

现在,就可以按下标访问数列的任意一项了:

>>> f = Fib()
>>> f[0]
1
>>> f[1]
1
>>> f[2]
2
>>> f[3]
3
>>> f[10]
89
>>> f[100]
573147844013817084101

但是list有个神奇的切片方法:

>>> list(range(100))[5:10]
[5, 6, 7, 8, 9]

对于Fib却报错。原因是__getitem__()传入的参数可能是一个int,也可能是一个切片对象slice,所以要做判断:

class Fib(object):
    def __getitem__(self, n):
        if isinstance(n, int): # n是索引
            a, b = 1, 1
            for x in range(n):
                a, b = b, a + b
            return a
        if isinstance(n, slice): # n是切片
            start = n.start
            stop = n.stop
            if start is None:
                start = 0
            a, b = 1, 1
            L = []
            for x in range(stop):
                if x >= start:
                    L.append(a)
                a, b = b, a + b
            return L

现在试试Fib的切片:

>>> f = Fib()
>>> f[0:5]
[1, 1, 2, 3, 5]
>>> f[:10]
[1, 1, 2, 3, 5, 8, 13, 21, 34, 55]

但是没有对step参数作处理:

>>> f[:10:2]
[1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89]

也没有对负数作处理,所以,要正确实现一个__getitem__()还是有很多工作要做的。

此外,如果把对象看成dict__getitem__()的参数也可能是一个可以作key的object,例如str

与之对应的是__setitem__()方法,把对象视作list或dict来对集合赋值。最后,还有一个__delitem__()方法,用于删除某个元素。

总之,通过上面的方法,我们自己定义的类表现得和Python自带的list、tuple、dict没什么区别,这完全归功于动态语言的“鸭子类型”,不需要强制继承某个接口。

__getattr__

正常情况下,当我们调用类的方法或属性时,如果不存在,就会报错。比如定义Student类:

class Student(object):

    def __init__(self):
        self.name = 'Michael'

调用name属性,没问题,但是,调用不存在的score属性,就有问题了:

>>> s = Student()
>>> print(s.name)
Michael
>>> print(s.score)
Traceback (most recent call last):
  ...
AttributeError: 'Student' object has no attribute 'score'

错误信息很清楚地告诉我们,没有找到score这个attribute。

要避免这个错误,除了可以加上一个score属性外,Python还有另一个机制,那就是写一个__getattr__()方法,动态返回一个属性。修改如下:

class Student(object):

    def __init__(self):
        self.name = 'Michael'

    def __getattr__(self, attr):
        if attr=='score':
            return 99

当调用不存在的属性时,比如score,Python解释器会试图调用__getattr__(self, 'score')来尝试获得属性,这样,我们就有机会返回score的值:

>>> s = Student()
>>> s.name
'Michael'
>>> s.score
99

返回函数也是完全可以的:

class Student(object):

    def __getattr__(self, attr):
        if attr=='age':
            return lambda: 25

只是调用方式要变为:

>>> s.age()
25

注意,只有在没有找到属性的情况下,才调用__getattr__,已有的属性,比如name,不会在__getattr__中查找。

此外,注意到任意调用如s.abc都会返回None,这是因为我们定义的__getattr__默认返回就是None。要让class只响应特定的几个属性,我们就要按照约定,抛出AttributeError的错误:

class Student(object):

    def __getattr__(self, attr):
        if attr=='age':
            return lambda: 25
        raise AttributeError('\'Student\' object has no attribute \'%s\'' % attr)

这实际上可以把一个类的所有属性和方法调用全部动态化处理了,不需要任何特殊手段。

这种完全动态调用的特性有什么实际作用呢?作用就是,可以针对完全动态的情况作调用。

举个例子:

现在很多网站都搞REST API,比如新浪微博、豆瓣啥的,调用API的URL类似:

如果要写SDK,给每个URL对应的API都写一个方法,那得累死,而且,API一旦改动,SDK也要改。

利用完全动态的__getattr__,我们可以写出一个链式调用:

class Chain(object):

    def __init__(self, path=''):
        self._path = path

    def __getattr__(self, path):
        return Chain('%s/%s' % (self._path, path))

    def __str__(self):
        return self._path

    __repr__ = __str__

试试:

>>> Chain().status.user.timeline.list
'/status/user/timeline/list'

这样,无论API怎么变,SDK都可以根据URL实现完全动态的调用(反射),而且,不随API的增加而改变!

还有些REST API会把参数放到URL中,比如GitHub的API:

GET /users/:user/repos

调用时,需要把:user替换为实际用户名。如果我们能写出这样的链式调用:

Chain().users('michael').repos

就可以非常方便地调用API了。有兴趣的童鞋可以试试写出来。

__call__

一个对象实例可以有自己的属性和方法,当我们调用实例方法时,我们用instance.method()来调用。能不能直接在实例本身上调用呢?在Python中,答案是肯定的。

任何类,只需要定义一个__call__()方法,就可以直接对实例进行调用。请看示例:

class Student(object):
    def __init__(self, name):
        self.name = name

    def __call__(self):
        print('My name is %s.' % self.name)

调用方式如下:

>>> s = Student('Michael')
>>> s() # self参数不要传入
My name is Michael.

__call__()还可以定义参数。对实例进行直接调用就好比对一个函数进行调用一样,所以你完全可以把对象看成函数,把函数看成对象,因为这两者之间本来就没啥根本的区别。

如果你把对象看成函数,那么函数本身其实也可以在运行期动态创建出来,因为类的实例都是运行期创建出来的,这么一来,我们就模糊了对象和函数的界限。

那么,怎么判断一个变量是对象还是函数呢?其实,更多的时候,我们需要判断一个对象是否能被调用,能被调用的对象就是一个Callable对象,比如函数和我们上面定义的带有__call__()的类实例:

>>> callable(Student())
True
>>> callable(max)
True
>>> callable([1, 2, 3])
False
>>> callable(None)
False
>>> callable('str')
False

通过callable()函数,我们就可以判断一个对象是否是“可调用”对象。

枚举类(Enum)

当我们需要定义常量时,一个办法是用大写变量通过整数来定义,例如月份:

JAN = 1
FEB = 2
MAR = 3
...
NOV = 11
DEC = 12

好处是简单,缺点是类型是int,并且仍然是变量。

更好的方法是这样的枚举类型定义一个class类型,然后,每个常量都是class的一个唯一实例。Python提供了Enum类来实现这个功能:

from enum import Enum

Month = Enum('Month', ('Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec'))

这样我们就获得了Month类型的枚举类,可以直接使用Month.Jan来引用一个常量,或者枚举它的所有成员:

for name, member in Month.__members__.items():
    print(name, '=>', member, ',', member.value)

value属性则是自动赋给成员的int常量,默认从1开始计数。

如果需要更精确地控制枚举类型,可以从Enum派生出自定义类:

from enum import Enum, unique

@unique
class Weekday(Enum):
    Sun = 0 # Sun的value被设定为0
    Mon = 1
    Tue = 2
    Wed = 3
    Thu = 4
    Fri = 5
    Sat = 6

@unique装饰器可以帮助我们检查保证没有重复值

访问这些枚举类型可以有若干种方法:

>>> day1 = Weekday.Mon
>>> print(day1)
Weekday.Mon
>>> print(Weekday.Tue)
Weekday.Tue
>>> print(Weekday['Tue'])
Weekday.Tue
>>> print(Weekday.Tue.value)
2
>>> print(day1 == Weekday.Mon)
True
>>> print(day1 == Weekday.Tue)
False
>>> print(Weekday(1))
Weekday.Mon
>>> print(day1 == Weekday(1))
True
>>> Weekday(7)
Traceback (most recent call last):
  ...
ValueError: 7 is not a valid Weekday
>>> for name, member in Weekday.__members__.items():
...     print(name, '=>', member)
...
Sun => Weekday.Sun
Mon => Weekday.Mon
Tue => Weekday.Tue
Wed => Weekday.Wed
Thu => Weekday.Thu
Fri => Weekday.Fri
Sat => Weekday.Sat

可见,既可以用成员名称引用枚举常量,又可以直接根据value的值获得枚举常量。

小结

Enum可以把一组相关常量定义在一个class中,且class不可变,而且成员可以直接比较。

 

posted @ 2018-04-28 17:52  paulzhang511  阅读(264)  评论(0编辑  收藏  举报