ORM相关
ORM说明
ORM要创建对应的数据,连接上对应的数据库,然后执行创建表的命令,翻译成相应的sql,然后到数据库里面执行,从而创建对应的表。
这样多了一步orm翻译成sql的过程,效率低了,但是没有太大的损伤,还能忍受,当你不能忍的时候,你可以自己写原生sql语句,一般的场景orm都够用了,开发起来速度更快,写法更贴近应用程序开发。
还有一个十分重要的点就是数据库升级或者变更,那么你之前用sql语句写的数据库操作,那么就需要将sql语句全部修改,但是如果你用orm,就不需要担心这个问题,不管是你从mysql变更到oracle还是从oracle更换到mysql,你如果用的是orm来搞的,你只需要修改一下orm的引擎(配置文件里面改一些配置就搞定)就可以了,你之前写的那些orm语句还是会自动翻译成对应数据库的sql语句。
创建类时候字段及参数 *****
字段
每个字段有一些特有的参数,例如,CharField需要max_length参数来指定VARCHAR
数据库字段的大小。还有一些适用于所有字段的通用参数。 这些参数在文档中有详细定义:
<1> CharField 字符串字段, 用于较短的字符串. CharField 要求必须有一个参数 maxlength, 用于从数据库层和Django校验层限制该字段所允许的最大字符数. <2> IntegerField #用于保存一个整数. <3> FloatField 一个浮点数. 必须 提供两个参数: 参数 描述 max_digits 总位数(不包括小数点和符号) decimal_places 小数位数 举例来说, 要保存最大值为 999 (小数点后保存2位),你要这样定义字段: models.FloatField(..., max_digits=5, decimal_places=2) 要保存最大值一百万(小数点后保存10位)的话,你要这样定义: models.FloatField(..., max_digits=17, decimal_places=10) #max_digits大于等于17就能存储百万以上的数了 admin 用一个文本框(<input type="text">)表示该字段保存的数据. <4> AutoField 一个 IntegerField, 添加记录时它会自动增长. 你通常不需要直接使用这个字段; 自定义一个主键:my_id=models.AutoField(primary_key=True) 如果你不指定主键的话,系统会自动添加一个主键字段到你的 model. <5> BooleanField A true/false field. admin 用 checkbox 来表示此类字段. <6> TextField 一个容量很大的文本字段. admin 用一个 <textarea> (文本区域)表示该字段数据.(一个多行编辑框). <7> EmailField 一个带有检查Email合法性的 CharField,不接受 maxlength 参数. <8> DateField 一个日期字段. 共有下列额外的可选参数: Argument 描述 auto_now 当对象被保存时,自动将该字段的值设置为当前时间.通常用于表示 "last-modified" 时间戳. auto_now_add 当对象首次被创建时,自动将该字段的值设置为当前时间.通常用于表示对象创建时间. (仅仅在admin中有意义...) <9> DateTimeField 一个日期时间字段. 类似 DateField 支持同样的附加选项. <10> ImageField 类似 FileField, 不过要校验上传对象是否是一个合法图片.#它有两个可选参数:height_field和width_field, 如果提供这两个参数,则图片将按提供的高度和宽度规格保存. <11> FileField 一个文件上传字段. 要求一个必须有的参数: upload_to, 一个用于保存上载文件的本地文件系统路径. 这个路径必须包含 strftime #formatting, 该格式将被上载文件的 date/time 替换(so that uploaded files don't fill up the given directory). admin 用一个<input type="file">部件表示该字段保存的数据(一个文件上传部件) . 注意:在一个 model 中使用 FileField 或 ImageField 需要以下步骤: (1)在你的 settings 文件中, 定义一个完整路径给 MEDIA_ROOT 以便让 Django在此处保存上传文件. (出于性能考虑,这些文件并不保存到数据库.) 定义MEDIA_URL 作为该目录的公共 URL. 要确保该目录对 WEB服务器用户帐号是可写的. (2) 在你的 model 中添加 FileField 或 ImageField, 并确保定义了 upload_to 选项,以告诉 Django 使用 MEDIA_ROOT 的哪个子目录保存上传文件.你的数据库中要保存的只是文件的路径(相对于 MEDIA_ROOT). 出于习惯你一定很想使用 Django 提供的 get_<#fieldname>_url 函数.举例来说,如果你的 ImageField 叫作 mug_shot, 你就可以在模板中以 {{ object.#get_mug_shot_url }} 这样的方式得到图像的绝对路径. <12> URLField 用于保存 URL. 若 verify_exists 参数为 True (默认), 给定的 URL 会预先检查是否存在( 即URL是否被有效装入且 没有返回404响应). admin 用一个 <input type="text"> 文本框表示该字段保存的数据(一个单行编辑框) <13> NullBooleanField 类似 BooleanField, 不过允许 NULL 作为其中一个选项. 推荐使用这个字段而不要用 BooleanField 加 null=True 选项 admin 用一个选择框 <select> (三个可选择的值: "Unknown", "Yes" 和 "No" ) 来表示这种字段数据. <14> SlugField "Slug" 是一个报纸术语. slug 是某个东西的小小标记(短签), 只包含字母,数字,下划线和连字符.#它们通常用于URLs 若你使用 Django 开发版本,你可以指定 maxlength. 若 maxlength 未指定, Django 会使用默认长度: 50. #在 以前的 Django 版本,没有任何办法改变50 这个长度. 这暗示了 db_index=True. 它接受一个额外的参数: prepopulate_from, which is a list of fields from which to auto-#populate the slug, via JavaScript,in the object's admin form: models.SlugField (prepopulate_from=("pre_name", "name"))prepopulate_from 不接受 DateTimeFields. <13> XMLField 一个校验值是否为合法XML的 TextField,必须提供参数: schema_path, 它是一个用来校验文本的 RelaxNG schema #的文件系统路径. <14> FilePathField 可选项目为某个特定目录下的文件名. 支持三个特殊的参数, 其中第一个是必须提供的. 参数 描述 path 必需参数. 一个目录的绝对文件系统路径. FilePathField 据此得到可选项目. Example: "/home/images". match 可选参数. 一个正则表达式, 作为一个字符串, FilePathField 将使用它过滤文件名. 注意这个正则表达式只会应用到 base filename 而不是 路径全名. Example: "foo.*\.txt^", 将匹配文件 foo23.txt 却不匹配 bar.txt 或 foo23.gif. recursive可选参数.要么 True 要么 False. 默认值是 False. 是否包括 path 下面的全部子目录. 这三个参数可以同时使用. match 仅应用于 base filename, 而不是路径全名. 那么,这个例子: FilePathField(path="/home/images", match="foo.*", recursive=True) ...会匹配 /home/images/foo.gif 而不匹配 /home/images/foo/bar.gif <15> IPAddressField 一个字符串形式的 IP 地址, (i.e. "24.124.1.30"). <16> CommaSeparatedIntegerField 用于存放逗号分隔的整数值. 类似 CharField, 必须要有maxlength参数.
关于FileField字段见我这篇关于media配置的博客
数据库存放头像文件信息: Django中media的配置
参数
(1)null 如果为True,Django 将用NULL 来在数据库中存储空值。 默认值是 False. (1)blank 如果为True,该字段允许不填。默认为False。 要注意,这与 null 不同。null纯粹是数据库范畴的,而 blank 是数据验证范畴的。 如果一个字段的blank=True,表单的验证将允许该字段是空值。如果字段的blank=False,该字段就是必填的。 (2)default 字段的默认值。可以是一个值或者可调用对象。如果可调用 ,每有新对象被创建它都会被调用,如果你的字段没有设置可以为空,那么将来如果我们后添加一个字段,这个字段就要给一个default值 (3)primary_key 如果为True,那么这个字段就是模型的主键。如果你没有指定任何一个字段的primary_key=True, Django 就会自动添加一个IntegerField字段做为主键,所以除非你想覆盖默认的主键行为, 否则没必要设置任何一个字段的primary_key=True。 (4)unique 如果该值设置为 True, 这个数据字段的值在整张表中必须是唯一的 (5)choices 由二元组组成的一个可迭代对象(例如,列表或元组),用来给字段提供选择项。 如果设置了choices ,默认的表单将是一个选择框而不是标准的文本框,<br>而且这个选择框的选项就是choices 中的选项。 (6)db_index 如果db_index=True 则代表着为此字段设置数据库索引。 DatetimeField、DateField、TimeField这个三个时间字段,都可以设置如下属性。 (7)auto_now_add 配置auto_now_add=True,创建数据记录的时候会把当前时间添加到数据库。 (8)auto_now 配置上auto_now=True,每次更新数据记录的时候会更新该字段,标识这条记录最后一次的修改时间。
关于auto_now与auto_now_add
当需要更新时间的时候,我们尽量通过datetime模块来创建当前时间,并保存或者更新到数据库里面,看下面的分析: 假如我们的表结构是这样的 class User(models.Model): username = models.CharField(max_length=255, unique=True, verbose_name='用户名') is_active = models.BooleanField(default=False, verbose_name='激活状态') 那么我们修改用户名和状态可以使用如下两种方法: 方法一: User.objects.filter(id=1).update(username='nick',is_active=True) 方法二: _t = User.objects.get(id=1) _t.username='nick' _t.is_active=True _t.save() 方法一适合更新一批数据,类似于mysql语句update user set username='nick' where id = 1 方法二适合更新一条数据,也只能更新一条数据,当只有一条数据更新时推荐使用此方法,另外此方法还有一个好处,我们接着往下看 具有auto_now属性字段的更新 我们通常会给表添加三个默认字段 - 自增ID,这个django已经默认加了,就像上边的建表语句,虽然只写了username和is_active两个字段,但表建好后也会有一个默认的自增id字段 - 创建时间,用来标识这条记录的创建时间,具有auto_now_add属性,创建记录时会自动填充当前时间到此字段 - 修改时间,用来标识这条记录最后一次的修改时间,具有auto_now属性,当记录发生变化时填充当前时间到此字段 就像下边这样的表结构 class User(models.Model): create_time = models.DateTimeField(auto_now_add=True, verbose_name='创建时间') update_time = models.DateTimeField(auto_now=True, verbose_name='更新时间') username = models.CharField(max_length=255, unique=True, verbose_name='用户名') is_active = models.BooleanField(default=False, verbose_name='激活状态') 当表有字段具有auto_now属性且你希望他能自动更新时,必须使用上边方法二的更新,不然auto_now字段不会更新,也就是: _t = User.objects.get(id=1) _t.username='nick' _t.is_active=True _t.save() json/dict类型数据更新字段 目前主流的web开放方式都讲究前后端分离,分离之后前后端交互的数据格式大都用通用的jason型,那么如何用最少的代码方便的更新json格式数据到数据库呢?同样可以使用如下两种方法: 方法一: data = {'username':'nick','is_active':'0'} User.objects.filter(id=1).update(**data) 同样这种方法不能自动更新具有auto_now属性字段的值 通常我们再变量前加一个星号(*)表示这个变量是元组/列表,加两个星号表示这个参数是字典 方法二: data = {'username':'nick','is_active':'0'} _t = User.objects.get(id=1) _t.__dict__.update(**data) _t.save() 方法二和方法一同样无法自动更新auto_now字段的值 注意这里使用到了一个__dict__方法 方法三: _t = User.objects.get(id=1) _t.role=Role.objects.get(id=3) _t.save()
数据库同步指令解析
数据库同步指令如下:
python manage.py makemigrations #生成记录,每次修改了models里面的内容或者添加了新的app,新的app里面写了models里面的内容,都要执行这两条
python manage.py migrate #执行上面这个语句的记录来创建表,生成的表名字前面会自带应用的名字,例如:你的book表在mysql里面叫做app01_book表
关于同步指令的执行简单原理:
1-在执行 python manager.py magrations 时django 会在相应的 app 的migration文件夹下面生成 一个python脚本文件
2-在执行 python manager.py migrate 时 django才会生成数据库表,那么django是如何生成数据库表的呢?
django是根据 migration下面的脚本文件来生成数据表的
每个migration文件夹下面有多个脚本,那么django是如何知道该执行那个文件的呢,
django有一张django-migrations表,表中记录了已经执行的脚本,那么表中没有的就是还没执行的脚本,则 执行migrate的时候就只执行表中没有记录的那些脚本。
3-有时在执行 migrate 的时候如果发现没有生成相应的表,可以看看在 django-migrations表中看看 脚本是否已经执行了,
可以删除 django-migrations 表中的记录 和 数据库中相应的 表 , 然后重新 执行
自定义字段
class UnsignedIntegerField(models.IntegerField): def db_type(self, connection): return 'integer UNSIGNED'
自定义char类型字段:
class FixedCharField(models.Field): """ 自定义的char类型的字段类 """ def __init__(self, max_length, *args, **kwargs): super().__init__(max_length=max_length, *args, **kwargs) self.length = max_length def db_type(self, connection): """ 限定生成数据库表的字段类型为char,长度为length指定的值 """ return 'char(%s)' % self.length class Class(models.Model): id = models.AutoField(primary_key=True) title = models.CharField(max_length=25) # 使用上面自定义的char类型的字段 cname = FixedCharField(max_length=25)
ORM字段与数据库实际字段的对应关系
这个对应关系在你python3安装目录下:site-packages/django/db/mysql/base.py文件里的一个data_types字典里:
# This dictionary maps Field objects to their associated MySQL column
# types, as strings. Column-type strings can contain format strings; they'll
# be interpolated against the values of Field.__dict__ before being output.
# If a column type is set to None, it won't be included in the output.
data_types = {
'AutoField': 'integer AUTO_INCREMENT',
'BigAutoField': 'bigint AUTO_INCREMENT',
'BinaryField': 'longblob',
'BooleanField': 'bool',
'CharField': 'varchar(%(max_length)s)',
'DateField': 'date',
'DateTimeField': 'datetime(6)',
'DecimalField': 'numeric(%(max_digits)s, %(decimal_places)s)',
'DurationField': 'bigint',
'FileField': 'varchar(%(max_length)s)',
'FilePathField': 'varchar(%(max_length)s)',
'FloatField': 'double precision',
'IntegerField': 'integer',
'BigIntegerField': 'bigint',
'IPAddressField': 'char(15)',
'GenericIPAddressField': 'char(39)',
'NullBooleanField': 'bool',
'OneToOneField': 'integer',
'PositiveIntegerField': 'integer UNSIGNED',
'PositiveSmallIntegerField': 'smallint UNSIGNED',
'SlugField': 'varchar(%(max_length)s)',
'SmallIntegerField': 'smallint',
'TextField': 'longtext',
'TimeField': 'time(6)',
'UUIDField': 'char(32)',
}
ORM查询的API及说明 *****
<1> all(): 查询所有结果,结果是queryset类型 <2> filter(**kwargs): 它包含了与所给筛选条件相匹配的对象,结果也是queryset类型 Book.objects.filter(title='linux',price=100) #里面的多个条件用逗号分开,并且这几个条件必须都成立,是and的关系,or关系的我们后面再学,直接在这里写是搞不定or的 <3> get(**kwargs): 返回与所给筛选条件相匹配的对象,不是queryset类型,是行记录对象,返回结果有且只有一个, 如果符合筛选条件的对象超过一个或者没有都会抛出错误。捕获异常try。 Book.objects.get(id=1) <4> exclude(**kwargs): 排除的意思,它包含了与所给筛选条件不匹配的对象,没有不等于的操作昂,用这个exclude,返回值是queryset类型 Book.objects.exclude(id=6),返回id不等于6的所有的对象,或者在queryset基础上调用,Book.objects.all().exclude(id=6) <5> order_by(*field): queryset类型的数据来调用,对查询结果排序,默认是按照id来升序排列的,返回值还是queryset类型 models.Book.objects.all().order_by('price','id') #直接写price,默认是按照price升序排列,按照字段降序排列,就写个负号就行了order_by('-price'),order_by('price','id')是多条件排序,按照price进行升序,price相同的数据,按照id进行升序 <6> reverse(): queryset类型的数据来调用,对查询结果反向排序,返回值还是queryset类型 <7> count(): queryset类型的数据来调用,返回数据库中匹配查询(QuerySet)的对象数量。 <8> first(): queryset类型的数据来调用,返回第一条记录 Book.objects.all()[0] = Book.objects.all().first(),得到的都是model对象,不是queryset <9> last(): queryset类型的数据来调用,返回最后一条记录 <10> exists(): queryset类型的数据来调用,如果QuerySet包含数据,就返回True,否则返回False 空的queryset类型数据也有布尔值True和False,但是一般不用它来判断数据库里面是不是有数据,如果有大量的数据,你用它来判断,那么就需要查询出所有的数据,效率太差了,用count或者exits 例:all_books = models.Book.objects.all().exists() #翻译成的sql是SELECT (1) AS `a` FROM `app01_book` LIMIT 1,就是通过limit 1,取一条来看看是不是有数据 <11> values(*field): 用的比较多,queryset类型的数据来调用,返回一个ValueQuerySet——一个特殊的QuerySet,运行后得到的并不是一系列 model的实例化对象,而是一个可迭代的字典序列,只要是返回的queryset类型,就可以继续链式调用queryset类型的其他的查找方法,其他方法也是一样的。 <12> values_list(*field): 它与values()非常相似,它返回的是一个元组序列,values返回的是一个字典序列 <13> distinct(): values和values_list得到的queryset类型的数据来调用,从返回结果中剔除重复纪录
QuerySet方法大全 *****
################################################################## # PUBLIC METHODS THAT ALTER ATTRIBUTES AND RETURN A NEW QUERYSET # ################################################################## def all(self) # 获取所有的数据对象 def filter(self, *args, **kwargs) # 条件查询 # 条件可以是:参数,字典,Q def exclude(self, *args, **kwargs) # 条件查询 # 条件可以是:参数,字典,Q def select_related(self, *fields) 性能相关:表之间进行join连表操作,一次性获取关联的数据。 总结: 1. select_related主要针一对一和多对一关系进行优化。 2. select_related使用SQL的JOIN语句进行优化,通过减少SQL查询的次数来进行优化、提高性能。 def prefetch_related(self, *lookups) 性能相关:多表连表操作时速度会慢,使用其执行多次SQL查询在Python代码中实现连表操作。 总结: 1. 对于多对多字段(ManyToManyField)和一对多字段,可以使用prefetch_related()来进行优化。 2. prefetch_related()的优化方式是分别查询每个表,然后用Python处理他们之间的关系。 def annotate(self, *args, **kwargs) # 用于实现聚合group by查询 from django.db.models import Count, Avg, Max, Min, Sum v = models.UserInfo.objects.values('u_id').annotate(uid=Count('u_id')) # SELECT u_id, COUNT(ui) AS `uid` FROM UserInfo GROUP BY u_id v = models.UserInfo.objects.values('u_id').annotate(uid=Count('u_id')).filter(uid__gt=1) # SELECT u_id, COUNT(ui_id) AS `uid` FROM UserInfo GROUP BY u_id having count(u_id) > 1 v = models.UserInfo.objects.values('u_id').annotate(uid=Count('u_id',distinct=True)).filter(uid__gt=1) # SELECT u_id, COUNT( DISTINCT ui_id) AS `uid` FROM UserInfo GROUP BY u_id having count(u_id) > 1 def distinct(self, *field_names) # 用于distinct去重 models.UserInfo.objects.values('nid').distinct() # select distinct nid from userinfo 注:只有在PostgreSQL中才能使用distinct进行去重 def order_by(self, *field_names) # 用于排序 models.UserInfo.objects.all().order_by('-id','age') def extra(self, select=None, where=None, params=None, tables=None, order_by=None, select_params=None) # 构造额外的查询条件或者映射,如:子查询 Entry.objects.extra(select={'new_id': "select col from sometable where othercol > %s"}, select_params=(1,)) Entry.objects.extra(where=['headline=%s'], params=['Lennon']) Entry.objects.extra(where=["foo='a' OR bar = 'a'", "baz = 'a'"]) Entry.objects.extra(select={'new_id': "select id from tb where id > %s"}, select_params=(1,), order_by=['-nid']) def reverse(self): # 倒序 models.UserInfo.objects.all().order_by('-nid').reverse() # 注:如果存在order_by,reverse则是倒序,如果多个排序则一一倒序 def defer(self, *fields): models.UserInfo.objects.defer('username','id') 或 models.UserInfo.objects.filter(...).defer('username','id') #映射中排除某列数据 def only(self, *fields): #仅取某个表中的数据 models.UserInfo.objects.only('username','id') 或 models.UserInfo.objects.filter(...).only('username','id') def using(self, alias): 指定使用的数据库,参数为别名(setting中的设置) ################################################## # PUBLIC METHODS THAT RETURN A QUERYSET SUBCLASS # ################################################## def raw(self, raw_query, params=None, translations=None, using=None): # 执行原生SQL models.UserInfo.objects.raw('select * from userinfo') # 如果SQL是其他表时,必须将名字设置为当前UserInfo对象的主键列名 models.UserInfo.objects.raw('select id as nid from 其他表') # 为原生SQL设置参数 models.UserInfo.objects.raw('select id as nid from userinfo where nid>%s', params=[12,]) # 将获取的到列名转换为指定列名 name_map = {'first': 'first_name', 'last': 'last_name', 'bd': 'birth_date', 'pk': 'id'} Person.objects.raw('SELECT * FROM some_other_table', translations=name_map) # 指定数据库 models.UserInfo.objects.raw('select * from userinfo', using="default") ################### 原生SQL ################### from django.db import connection, connections cursor = connection.cursor() # cursor = connections['default'].cursor() cursor.execute("""SELECT * from auth_user where id = %s""", [1]) row = cursor.fetchone() # fetchall()/fetchmany(..) def values(self, *fields): # 获取每行数据为字典格式 def values_list(self, *fields, **kwargs): # 获取每行数据为元祖 def dates(self, field_name, kind, order='ASC'): # 根据时间进行某一部分进行去重查找并截取指定内容 # kind只能是:"year"(年), "month"(年-月), "day"(年-月-日) # order只能是:"ASC" "DESC" # 并获取转换后的时间 - year : 年-01-01 - month: 年-月-01 - day : 年-月-日 models.DatePlus.objects.dates('ctime','day','DESC') def datetimes(self, field_name, kind, order='ASC', tzinfo=None): # 根据时间进行某一部分进行去重查找并截取指定内容,将时间转换为指定时区时间 # kind只能是 "year", "month", "day", "hour", "minute", "second" # order只能是:"ASC" "DESC" # tzinfo时区对象 models.DDD.objects.datetimes('ctime','hour',tzinfo=pytz.UTC) models.DDD.objects.datetimes('ctime','hour',tzinfo=pytz.timezone('Asia/Shanghai')) """ pip3 install pytz import pytz pytz.all_timezones pytz.timezone(‘Asia/Shanghai’) """ def none(self): # 空QuerySet对象 #################################### # METHODS THAT DO DATABASE QUERIES # #################################### def aggregate(self, *args, **kwargs): # 聚合函数,获取字典类型聚合结果 from django.db.models import Count, Avg, Max, Min, Sum result = models.UserInfo.objects.aggregate(k=Count('u_id', distinct=True), n=Count('nid')) ===> {'k': 3, 'n': 4} def count(self): # 获取个数 def get(self, *args, **kwargs): # 获取单个对象 def create(self, **kwargs): # 创建对象 def bulk_create(self, objs, batch_size=None): # 批量插入 # batch_size表示一次插入的个数 objs = [ models.DDD(name='r11'), models.DDD(name='r22') ] models.DDD.objects.bulk_create(objs, 10) def get_or_create(self, defaults=None, **kwargs): # 如果存在,则获取,否则,创建 # defaults 指定创建时,其他字段的值 obj, created = models.UserInfo.objects.get_or_create(username='root1', defaults={'email': '1111111','u_id': 2, 't_id': 2}) def update_or_create(self, defaults=None, **kwargs): # 如果存在,则更新,否则,创建 # defaults 指定创建时或更新时的其他字段 obj, created = models.UserInfo.objects.update_or_create(username='root1', defaults={'email': '1111111','u_id': 2, 't_id': 1}) def first(self): # 获取第一个 def last(self): # 获取最后一个 def in_bulk(self, id_list=None): # 根据主键ID进行查找 id_list = [11,21,31] models.DDD.objects.in_bulk(id_list) def delete(self): # 删除 def update(self, **kwargs): # 更新 def exists(self): # 是否有结果
distinct的说明与values/values_list的机制
关于distinct的说明:
必须先用values/values_list筛选出数据后再进行去重~
如果不先筛选,将全部数据进行distinct()的操作,由于id肯定不一样,所以这样做没有意义!
values的用法和返回结果举例
all_books = models.Book.objects.all().values('id','title') print(all_books) #<QuerySet [{'title': 'linux', 'id': 6}, {'title': '你好', 'id': 7}, {'title': 'linux', 'id': 8}, {'title': 'xxx', 'id': 9}, {'title': 'gogogo', 'id': 10}]> ''' values做的事情: ret = [] #queryset类型 for obj in Book.objects.all(): temp = { #元素是字典类型 'id':obj.id, 'title':obj.title } ret.append(temp) '''
values_list的用法和返回结果说明
all_books = models.Book.objects.all().values_list('id','title') print(all_books) #<QuerySet [(6, 'linux'), (7, '你好'), (8, 'linux'), (9, 'xxx'), (10, 'gogogo')]> ''' values做的事情: ret = [] #queryset类型 for obj in Book.objects.all(): temp = ( #元素是元祖类型 obj.id,obj.title ) ret.append(temp) '''
distinct的用法和返回结果说明
''' all_books = models.Book.objects.all().distinct() #这样写是表示记录中所有的字段重复才叫重复,但是我们知道有主键的存在,所以不可能所有字段数据都重复 all_books = models.Book.objects.all().distinct('price') #报错,不能在distinct里面加字段名称 all_books = models.Book.objects.all().values('price').distinct()#<QuerySet [(Decimal('11.00'),), (Decimal('111.00'),), (Decimal('120.00'),), (Decimal('11111.00'),)]> ''' all_books = models.Book.objects.all().values_list('price').distinct() #<QuerySet [{'price': Decimal('11.00')}, {'price': Decimal('111.00')}, {'price': Decimal('120.00')}, {'price': Decimal('11111.00')}]> 只能用于valuse和values_list进行去重 #title和price两个同时重复才算一条重复的记录 all_books = models.Book.objects.all().values_list('title','price').distinct()
在MySQL数据库中查询日期的问题 ***
#找2012年的所有书籍 all_books = models.Book.objects.filter(pub_date__year=2012) #找大于等于2012年的所有书籍 all_books = models.Book.objects.filter(pub_date__year__gte=2012) #找2019年月份的所有书籍,如果明明有结果,你却查不出结果,是因为mysql数据库的时区和咱们django的时区不同导致的, #你需要做的就是将django中的settings配置文件里面的USE_TZ = True改为False,就可以查到结果了, #以后这个值就改为False,而且就是因为我们用的mysql数据库才会有这个问题,其他数据库没有这个问题。 all_books = models.Book.objects.filter(pub_date__year=2019,pub_date__month=2)
~~