文本去重之MinHash算法
1.概述
Jaccard index是用来计算相似性,也就是距离的一种度量标准。假如有集合A、B,那么,
那么对集合A、B,hmin(A) = hmin(B)成立的条件是A ∪ B 中具有最小哈希值的元素也在 ∩ B中。这里有一个假设,h(x)是一个良好的哈希函数,它具有很好的均匀性,能够把不同元素映射成不同的整数。
所以有,Pr[hmin(A) = hmin(B)] = J(A,B),即集合A和B的相似度为集合A、B经过hash后最小哈希值相等的概率。
第一种:使用多个hash函数
为了计算集合A、B具有最小哈希值的概率,我们可以选择一定数量的hash函数,比如K个。然后用这K个hash函数分别对集合A、B求哈希值,对每个集合都得到K个最小值。比如Min(A)k={a1,a2,...,ak},Min(B)k={b1,b2,...,bk}。
那么,集合A、B的相似度为|Min(A)k∩Min(B)k|/|Min(A)k∪Min(B)k|,及Min(A)k和Min(B)k中相同元素个数与总的元素个数的比例。
第二种:使用单个hash函数
第一种方法有一个很明显的缺陷,那就是计算复杂度高。使用单个hash函数是怎么解决这个问题的呢?请看: 前面我们定义过hmin(S)为集合S中具有最小哈希值的一个元素,那么我们也可以定义hmink(S)为集合S中具有最小哈希值的K个元素。这样一来,我们就只需要对每个集合求一次哈希,然后取最小的K个元素。计算两个集合A、B的相似度,就是集合A中最小的K个元素与集合B中最小的K个元素的交集个数与并集个数的比例。
看完上面的,你应该大概清楚MinHash是怎么回事了。但是,MinHash的好处到底在哪里呢?计算两篇文档的相似度,就直接统计相同的词数和总的次数,然后就Jaccardindex不就可以了吗?对,如果仅仅对两篇文档计算相似度而言,MinHash没有什么优势,反而把问题复杂化了。但是如果有海量的文档需要求相似度,比如在推荐系统中计算物品的相似度,如果两两计算相似度,计算量过于庞大。下面我们看看MinHash是怎么解决问题的。
比如 元素集合{a,b,c,d,e},其中s1={a,d},s2={c},s3={b,d,e},s4={a,c,d} 那么这四个集合的矩阵表示为: