leetcode-最大子序和(动态规划讲解)
最大子序和(动态规划讲解)
给定一个整数数组 nums ,找到一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。
示例:
输入: [-2,1,-3,4,-1,2,1,-5,4],
输出: 6
解释: 连续子数组 [4,-1,2,1] 的和最大,为 6。
进阶:
如果你已经实现复杂度为 O(n) 的解法,尝试使用更为精妙的分治法求解。
重点在动态规划。
1.采用的是s[j] -s[i]的方式,其中s[i] 和s[j]的查找的时间复杂度教大。
class Solution { public int maxSubArray(int[] nums) { if(nums.length==1)return nums[0]; int sum[]=new int [nums.length+1]; sum[0]=0;int temp=0; for(int i=1;i<nums.length+1;i++){ sum[i]=sum[i-1]+nums[i-1]; } int len=nums.length; int max=Integer.MIN_VALUE; for(int i=0;i<len+1;i++){ for(int j=i+1;j<len+1;j++){ if(sum[j]-sum[i]>max)max=sum[j]-sum[i]; } } return max; } }
2.动态规划解法
-
令状态dp[i]表示以A[i]作为末尾的连续序列的最大和。比如[-2,1,-3,4,-1,2,1,-5,4] 一个序列,下标分别是0,1,2,3,4,5,6,7,8
dp[0]=-2
dp[1]=-1;
dp[2]=-4;
dp[3]=0;
dp[4]=-1
通过设置一个dp数组,要求的最大和其实就是dp[0],dp[1]...dp[n-1]中的最大值,下面想办法求解dp数组。
-
作如下考虑:因为dp[i]要求是必须以A[i]结尾的连续序列,那么只有两种情况:
1.这个最大和的连续序列只有一个元素,以A[i]开始,A[i]结尾
2.这个最大和的连续序列多个元素,从前面A[p]开始(p<i),一直到A[i]结束。
对于第一种情况,最大和就是A[i]本身。 第二张,最大和是dp[i-1]+A[i]。
于是得到方程:dp[i]=max(dp[i-1]+A[i],A[i])。 边界dp[0]=0.
于是从小到大输出dp数组,找到他的最大值,即为最大子序列和。
class Solution { public int maxSubArray(int[] nums) { int dp[]=new int[nums.length+1]; dp[0]=nums[0]; for(int i=1;i<nums.length;i++){ dp[i]=Math.max(dp[i-1]+nums[i],nums[i]); } int k=0; for(int i=0;i<nums.length;i++){ if(dp[i]>dp[k])k=i; } return dp[k]; } }