常用的boosting算法
boosting算法有许多种具体算法,包括但不限于ada boosting \ GBDT \ XGBoost 。
ada boosting
原始数据集 》 某种算法拟合,会产生错误 》 根据上个模型预测结果,更新样本点权重(预测错误的结果权重增大) 》 再次使用模型进行预测 》重复上述过程,继续重点训练错误的预测样本点。
ada boosting需指定Base Estimator
from sklearn.ensemble import AdaBoostClassifier from sklearn.tree import DecisionTreeClassifier ada_clf = AdaBoostClassifier(DecisionTreeClassifier(max_depth=2), n_estimators=500) ada_clf.fit(X_train, y_train) ada_clf.score(X_test, y_test)
Gradient Boosting
Gradient Boosting 又称为 GBDT (gradient boosting decision tree )
Gradient Boosting 的基本思想是:串行地生成多个弱学习器,每个弱学习器的目标是拟合先前累加模型损失的负梯度, 使得加上该弱学习器后的累加模型损失往先前累加模型损失的负梯度方向减少。因为是往负梯度方向,所以整体模型的损失降低的最快,因此每个弱学习器的训练目标就是拟合先前累加模型损失的负梯度。
Gradient Boosting是基于决策树的,不用指定Base Estimator
from sklearn.ensemble import GradientBoostingClassifier gb_clf = GradientBoostingClassifier(max_depth=2, n_estimators=30) gb_clf.fit(X_train, y_train) gb_clf.score(X_test, y_test)
Xgboost
Xgboost是在GBDT的基础上进行改进,使之更强大,适用于更大范围。用来确定特征的重要程度。
Xgboost是一种提升树模型,所以它是将许多树模型集成在一起,形成一个很强的分类器。而所用到的树模型则是CART回归树模型。
Xgboost一般和sklearn一起使用,但是由于sklearn中没有集成Xgboost,所以才需要单独下载安装。
Xgboost是以“正则化提升(regularized boosting)” 技术而闻名。Xgboost在代价函数里加入了正则项,用于控制模型的复杂度。正则项里包含了树的叶子节点个数,每个叶子节点上输出的score的L2模的平方和。从Bias-variance tradeoff角度来讲,正则项降低了模型的variance,使学习出来的模型更加简单,防止过拟合,这也是Xgboost优于传统GBDT的一个特征。
Xgboost工具支持并行。众所周知,Boosting算法是顺序处理的,也是说Boosting不是一种串行的结构吗?怎么并行的?注意Xgboost的并行不是tree粒度的并行。Xgboost也是一次迭代完才能进行下一次迭代的(第t次迭代的代价函数里包含)。Xgboost的并行式在特征粒度上的,也就是说每一颗树的构造都依赖于前一颗树。
决策树的学习最耗时的一个步骤就是对特征的值进行排序(因为要确定最佳分割点),Xgboost在训练之前,预先对数据进行了排序,然后保存为block结构,后面的迭代中重复使用这个结构,大大减小计算量。这个block结构也使得并行成为了可能,在进行节点的分类时,需要计算每个特征的增益,大大减少计算量。这个block结构也使得并行成为了可能,在进行节点的分裂的时候,需要计算每个特征的增益,最终选增益最大的那个特征去做分裂,那么各个特征的增益计算就可以开多线程进行。