pytorch TensorDataset和DataLoader区别
TensorDataset
TensorDataset可以用来对 tensor 进行打包,就好像 python 中的 zip 功能。该类通过每一个 tensor 的第一个维度进行索引。因此,该类中的 tensor 第一维度必须相等. 另外:TensorDataset 中的参数必须是 tensor
import torch from torch.utils.data import TensorDataset from torch.utils.data import DataLoader a = torch.tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9], [1, 2, 3], [4, 5, 6], [7, 8, 9], [1, 2, 3], [4, 5, 6], [7, 8, 9], [1, 2, 3], [4, 5, 6], [7, 8, 9]]) b = torch.tensor([44, 55, 66, 44, 55, 66, 44, 55, 66, 44, 55, 66]) train_ids = TensorDataset(a, b) # 切片输出 print(train_ids[0:2]) print('=' * 80) # 循环取数据 for x_train, y_label in train_ids: print(x_train, y_label) # DataLoader进行数据封装 print('=' * 80) train_loader = DataLoader(dataset=train_ids, batch_size=4, shuffle=True) for i, data in enumerate(train_loader, 1): # 注意enumerate返回值有两个,一个是序号,一个是数据(包含训练数据和标签) x_data, label = data print(' batch:{0} x_data:{1} label: {2}'.format(i, x_data, label))
输出结果:
DataLoader
DataLoader就是用来包装所使用的数据,每次抛出一批数据,作为迭代器使用
import torch import torch.utils.data as Data BATCH_SIZE = 5 # linspace, 生成1到10的10个数构成的等差数列 x = torch.linspace(1, 10, 10) y = torch.linspace(10, 1, 10) # 把数据放在数据库中 torch_dataset = Data.TensorDataset(x, y) # 从数据库中每次抽出batch size个样本 loader = Data.DataLoader(dataset=torch_dataset, batch_size=BATCH_SIZE, # x, y 是相差为1个数为10的等差数列, batch= 5, 遍历loader就只有两个数据 shuffle=False, # 不打乱顺序,便于查看 num_workers=0) def show_batch(): for step, (batch_x, batch_y) in enumerate(loader): # training print("steop:{}, batch_x:{}, batch_y:{}".format(step, batch_x, batch_y)) #方便输出 if __name__ == '__main__': show_batch()
输出结果: