ReactivePipeline
<thinking>
Looking at ReactivePipeline's usage patterns from the article, I should break down:
1. Purpose:
- Allows writing sequential-looking code that executes asynchronously
- Manages dependencies between service calls
- Optimizes thread utilization
- Reduces code complexity vs raw CompletableFuture
2. Implementation considerations:
- Can be implemented using Java 8's CompletableFuture
- Need to show both simple and complex usage examples
- Should demonstrate error handling and timeout patterns
- Want to compare with traditional synchronous approach
3. Key features to highlight:
- Context sharing between tasks
- Dependency declaration
- Performance benefits
- Error handling
- Timeout management
Let me structure a practical response showing the implementation and usage patterns.
</thinking>
是的,ReactivePipeline完全可以用Java 8实现。我来展示具体的实现和使用方式:
1. 首先是基础实现:
```java
public class ReactivePipeline<T> {
private CompletableFuture<T> pipeline;
private Map<String, Object> context;
public ReactivePipeline(T initialValue) {
this.pipeline = CompletableFuture.completedFuture(initialValue);
this.context = new HashMap<>();
}
// 添加异步任务
public ReactivePipeline<T> addTask(Function<T, CompletableFuture<T>> task) {
pipeline = pipeline.thenComposeAsync(task);
return this;
}
// 添加超时控制
public ReactivePipeline<T> addTimeout(Duration timeout) {
pipeline = pipeline.orTimeout(timeout.toMillis(), TimeUnit.MILLISECONDS);
return this;
}
// 获取上下文
public Map<String, Object> getContext() {
return context;
}
// 获取结果
public T get() throws Exception {
return pipeline.get();
}
}
```
2. 实际使用示例(电商下单场景):
```java
@Service
public class OrderService {
@Autowired
private ProductService productService;
@Autowired
private InventoryService inventoryService;
@Autowired
private PaymentService paymentService;
public OrderResult createOrder(OrderRequest request) {
OrderContext orderContext = new OrderContext(request);
// 创建pipeline并执行
ReactivePipeline<OrderContext> pipeline = new ReactivePipeline<>(orderContext)
// 查询商品信息
.addTask(ctx -> CompletableFuture.supplyAsync(() -> {
ProductInfo product = productService.getProduct(ctx.getProductId());
ctx.setProduct(product);
return ctx;
}))
// 检查库存
.addTask(ctx -> CompletableFuture.supplyAsync(() -> {
boolean hasStock = inventoryService.checkStock(ctx.getProductId(), ctx.getQuantity());
if (!hasStock) {
throw new OutOfStockException();
}
return ctx;
}))
// 预扣款
.addTask(ctx -> CompletableFuture.supplyAsync(() -> {
PaymentResult payment = paymentService.preAuth(ctx.getUserId(), ctx.getAmount());
ctx.setPaymentResult(payment);
return ctx;
}))
// 设置3秒超时
.addTimeout(Duration.ofSeconds(3));
try {
OrderContext result = pipeline.get();
return buildOrderResult(result);
} catch (Exception e) {
handleException(e);
}
}
}
```
3. 更复杂的并行任务处理:
```java
public class ReactivePipeline<T> {
// 添加并行任务
public ReactivePipeline<T> addParallelTasks(
List<Function<T, CompletableFuture<T>>> tasks) {
pipeline = pipeline.thenComposeAsync(value -> {
List<CompletableFuture<T>> futures = tasks.stream()
.map(task -> task.apply(value))
.collect(Collectors.toList());
return CompletableFuture.allOf(
futures.toArray(new CompletableFuture[0]))
.thenApply(v -> value);
});
return this;
}
}
// 使用示例
pipeline.addParallelTasks(Arrays.asList(
ctx -> updateInventory(ctx),
ctx -> updateUserPoints(ctx),
ctx -> sendNotification(ctx)
));
```
4. 错误处理增强:
```java
public class ReactivePipeline<T> {
// 添加异常处理
public ReactivePipeline<T> addErrorHandler(
Function<Throwable, T> errorHandler) {
pipeline = pipeline.exceptionally(errorHandler);
return this;
}
// 添加重试逻辑
public ReactivePipeline<T> withRetry(int maxAttempts, Duration delay) {
CompletableFuture<T> retryPipeline = pipeline;
for (int i = 1; i < maxAttempts; i++) {
retryPipeline = retryPipeline.exceptionally(ex -> {
try {
Thread.sleep(delay.toMillis());
return pipeline.get();
} catch (Exception e) {
throw new CompletionException(e);
}
});
}
pipeline = retryPipeline;
return this;
}
}
// 使用示例
pipeline
.addErrorHandler(ex -> {
log.error("Pipeline执行异常", ex);
return buildFallbackResult();
})
.withRetry(3, Duration.ofSeconds(1));
```
ReactivePipeline的主要优势:
1. 代码可读性好:虽然是异步执行,但代码看起来是顺序的
2. 性能优化:自动实现异步并行处理
3. 错误处理统一:可以集中处理异常
4. 超时控制:可以为整个流程设置超时
5. 可扩展性:易于添加新的功能,如重试、监控等
使用建议:
1. 为每个task设置合理的超时时间
2. 添加监控和日志
3. 合理使用并行任务
4. 注意异常处理的完整性
5. 考虑添加熔断机制
ReactivePipeline特别适合处理有依赖关系的多个异步操作,比如电商下单、支付等场景。相比传统的同步调用或直接使用CompletableFuture,它提供了更好的代码组织方式和更完善的错误处理机制。
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 阿里最新开源QwQ-32B,效果媲美deepseek-r1满血版,部署成本又又又降低了!
· SQL Server 2025 AI相关能力初探
· AI编程工具终极对决:字节Trae VS Cursor,谁才是开发者新宠?
· 开源Multi-agent AI智能体框架aevatar.ai,欢迎大家贡献代码
· Manus重磅发布:全球首款通用AI代理技术深度解析与实战指南
2023-01-06 记1次数据堆栈溢出