spark任务提交之SparkLauncher
最近需要做一个UI,在UI上做一个可以提交的spark程序的功能;
1-zeppelin就是这样的一个工具,其内部也是比较繁琐的。有兴趣的可以了解下。
2-SparkLauncher,spark自带的类
linux下其基本用法:
public static void main(String[] args) throws Exception { HashMap<String, String> envParams = new HashMap<>(); envParams.put("YARN_CONF_DIR", "/home/hadoop/cluster/hadoop-release/etc/hadoop"); envParams.put("HADOOP_CONF_DIR", "/home/hadoop/cluster/hadoop-release/etc/hadoop"); envParams.put("SPARK_HOME", "/home/hadoop/cluster/spark-new"); envParams.put("SPARK_PRINT_LAUNCH_COMMAND", "1"); SparkAppHandle spark = new SparkLauncher(envParams) .setAppResource("/home/hadoop/cluster/spark-new/examples/jars/spark-examples_2.11-2.2.1.jar") .setMainClass("org.apache.spark.examples.SparkPi") .setMaster("yarn") .startApplication(); Thread.sleep(100000); }
运行结果:
信息: 18/12/03 18:12:12 INFO scheduler.DAGScheduler: ResultStage 0 (reduce at SparkPi.scala:38) finished in 1.462 s 十二月 03, 2018 6:12:12 下午 org.apache.spark.launcher.OutputRedirector redirect 信息: 18/12/03 18:12:12 INFO scheduler.DAGScheduler: Job 0 finished: reduce at SparkPi.scala:38, took 3.395705 s 十二月 03, 2018 6:12:12 下午 org.apache.spark.launcher.OutputRedirector redirect 信息: Pi is roughly 3.1461157305786527
windows下运行:
如果linux能运行,那就安装windows下所依赖包,包含jdk,hadoop,scala,spark;
可以参考https://blog.csdn.net/u011513853/article/details/52865076
代码贴上:
public class SparkLauncherTest { private static String YARN_CONF_DIR = null; private static String HADOOP_CONF_DIR = null; private static String SPARK_HOME = null; private static String SPARK_PRINT_LAUNCH_COMMAND = "1"; private static String Mater = null; private static String appResource = null; private static String mainClass = null; public static void main(String[] args) throws Exception { if (args.length != 1) { System.out.println("Usage: ServerStatisticSpark <local>"); System.exit(1); } TrackerConfig trackerConfig = TrackerConfig.loadConfig(); if ("local".equals(args[0])){ YARN_CONF_DIR="D:\\software\\hadoop-2.4.1\\etc\\hadoop"; HADOOP_CONF_DIR="D:\\software\\hadoop-2.4.1\\etc\\hadoop"; SPARK_HOME="D:\\spark-new"; Mater = "local"; appResource = "D:\\spark-new\\examples\\jars\\spark-examples_2.11-2.2.1.jar"; } else { YARN_CONF_DIR="/home/hadoop/cluster/hadoop-release/etc/hadoop"; HADOOP_CONF_DIR="/home/hadoop/cluster/hadoop-release/etc/hadoop"; SPARK_HOME="/home/hadoop/cluster/spark-new"; Mater = "yarn"; appResource = "/home/hadoop/cluster/spark-new/examples/jars/spark-examples_2.11-2.2.1.jar"; } HashMap<String, String> envParams = new HashMap<>(); envParams.put("YARN_CONF_DIR", YARN_CONF_DIR); envParams.put("HADOOP_CONF_DIR", HADOOP_CONF_DIR); envParams.put("SPARK_HOME", SPARK_HOME); envParams.put("SPARK_PRINT_LAUNCH_COMMAND", SPARK_PRINT_LAUNCH_COMMAND); mainClass = "org.apache.spark.examples.SparkPi"; SparkAppHandle spark = new SparkLauncher(envParams) .setAppResource(appResource) .setMainClass(mainClass) .setMaster(Mater) .startApplication(); Thread.sleep(100000); } }
运行结果:
信息: 18/12/04 17:01:11 INFO scheduler.DAGScheduler: Job 0 finished: reduce at SparkPi.scala:38, took 0.808691 s 十二月 04, 2018 5:01:11 下午 org.apache.spark.launcher.OutputRedirector redirect 信息: Pi is roughly 3.1455757278786396
遇到的问题,sparkLauncher一直运行不了;
这时hadoop,jdk都用了很长时间,排除其原因;
本地可以编写和运行scala,应该也不属于其中的问题;
最后发现cmd运行spark\bin下的spark-submit会出现问题。于是重新拷贝linux下的spark包;
发现spark-shell可以正常运行,原来会报错:不是内部或外部命令,也不是可运行的程序或批处理文件
现在还存在的问题:
打jar包时,会有部分类打不进去,报错信息类没有找到;
等UI做成后,会更新整个流程。