外微分 全微分 极限 连续 可导 可微

 

如果函数z = f (x, y)在点(x,y)的全增量
 可表示为
其中A 、B仅与x、y 有关,而不依赖于Δx 、Δy,
 ,则称函数z = f (x, y)在点(x,y)处可微分, AΔx+BΔy称为函数z = f (x, y)在点(x,y)处的全微分。记作dz,即
函数若在某平面区域D内处处可微时,则称这个函数是D内的可微函数,全微分的定义可推广到三元及三元以上函数。
 
定理1
如果函数z=f(x,y)在点p0(x0,y0)处可微,则z=f(x,y)在p0(x0,y0)处连续,且各个偏导数存在,并且有f′x(x0,y0)=A,f′y(x0,y0)=B。
定理2
若函数z=f(x,y)在点p0(x0,y0)处的偏导数f′x,f′y连续,则函数f在点p0处可微。
定理3
若函数z = f (x, y)在点(x, y)可微分,则该函数在点(x,y)的偏导数
必存在,且函数z = f (x, y)在点(x,y)的全微分为:
 

判别可微方法

 
1.若f (x,y)在点(x0, y0)不连续,或偏导不存在,则必不可微;
2.若f (x,y)在点(x0, y0)的邻域内偏导存在且连续必可微;
3.检查
是否为
的高阶无穷小,若是则可微,否则不可微。
 

 

 

外微分_百度百科 https://baike.baidu.com/item/%E5%A4%96%E5%BE%AE%E5%88%86/1802695?fr=aladdin

 

The exterior derivative of a differential form of degree k is a differential form of degree k + 1.

If f  is a smooth function (a 0-form), then the exterior derivative of f  is the differential of f . That is, df  is the unique 1-form such that for every smooth vector field X, df (X) = dXf , where dXf  is the directional derivative of f  in the direction of X.

There are a variety of equivalent definitions of the exterior derivative of a general k-form.

In terms of axioms

The exterior derivative is defined to be the unique ℝ-linear mapping from k-forms to (k + 1)-forms satisfying the following properties:

  1. df  is the differential of f  for smooth functions f .
  2. d(df ) = 0 for any smooth function f .
  3. d(αβ) = β + (−1)p (α) where α is a p-form. That is to say, d is an antiderivation of degree 1 on the exterior algebra of differential forms.

The second defining property holds in more generality: in fact, d() = 0 for any k-form α; more succinctly, d2 = 0. The third defining property implies as a special case that if f  is a function and α a k-form, then d( ) = d( fα) = df  ∧ α +  f  ∧ because functions are 0-forms, and scalar multiplication and the exterior product are equivalent when one of the arguments is a scalar.

 

posted @ 2018-06-29 08:52  papering  阅读(576)  评论(0编辑  收藏  举报