半参数模型

半参数模型

Semiparametric model - Wikipedia  https://en.wikipedia.org/wiki/Semiparametric_model

In statistics, a semiparametric model is a statistical model that has parametric and nonparametric components.

A statistical model is a collection of distributions: {\displaystyle \{P_{\theta }:\theta \in \Theta \}}\{P_{\theta }:\theta \in \Theta \} indexed by a parameter {\displaystyle \theta }\theta .

  • parametric model is one in which the indexing parameter is a finite-dimensional vector (in {\displaystyle k}k-dimensional Euclidean space for some integer {\displaystyle k}k); i.e. the set of possible values for {\displaystyle \theta }\theta  is a subset of {\displaystyle \mathbb {R} ^{k}}\mathbb {R} ^{k}, or {\displaystyle \Theta \subset \mathbb {R} ^{k}}\Theta \subset {\mathbb  {R}}^{k}. In this case we say that {\displaystyle \theta }\theta  is finite-dimensional.
  • In nonparametric models, the set of possible values of the parameter {\displaystyle \theta }\theta  is a subset of some space, not necessarily finite-dimensional. For example, we might consider the set of all distributions with mean 0. Such spaces are vector spaces with topological structure, but may not be finite-dimensional as vector spaces. Thus, {\displaystyle \Theta \subset \mathbb {F} }\Theta \subset {\mathbb  {F}} for some possibly infinite-dimensional space {\displaystyle \mathbb {F} }\mathbb {F} .
  • In semiparametric models, the parameter has both a finite-dimensional component and an infinite-dimensional component (often a real-valued function defined on the real line). Thus the parameter space {\displaystyle \Theta }\Theta  in a semiparametric model satisfies {\displaystyle \Theta \subset \mathbb {R} ^{k}\times \mathbb {F} }\Theta \subset {\mathbb  {R}}^{k}\times {\mathbb  {F}}, where {\displaystyle \mathbb {F} }\mathbb {F}  is an infinite-dimensional space.

It may appear at first that semiparametric models include nonparametric models, since they have an infinite-dimensional as well as a finite-dimensional component. However, a semiparametric model is considered to be "smaller" than a completely nonparametric model because we are often interested only in the finite-dimensional component of {\displaystyle \theta }\theta . That is, we are not interested in estimating the infinite-dimensional component. In nonparametric models, by contrast, the primary interest is in estimating the infinite-dimensional parameter. Thus the estimation task is statistically harder in nonparametric models.

These models often use smoothing or kernels.

 

posted @ 2018-03-31 15:57  papering  阅读(950)  评论(0编辑  收藏  举报