多线程上下文切换诱因

 

 11. 标准库简介 —— 第二部分 — Python 3.11.3 文档 https://docs.python.org/zh-cn/3/tutorial/stdlib2.html

线程是一种对于非顺序依赖的多个任务进行解耦的技术。多线程可以提高应用的响应效率,当接收用户输入的同时,保持其他任务在后台运行。一个有关的应用场景是,将 I/O 和计算运行在两个并行的线程中。

以下代码展示了高阶的 threading 模块如何在后台运行任务,且不影响主程序的继续运行:

import threading, zipfile

class AsyncZip(threading.Thread):
    def __init__(self, infile, outfile):
        threading.Thread.__init__(self)
        self.infile = infile
        self.outfile = outfile

    def run(self):
        f = zipfile.ZipFile(self.outfile, 'w', zipfile.ZIP_DEFLATED)
        f.write(self.infile)
        f.close()
        print('Finished background zip of:', self.infile)

background = AsyncZip('mydata.txt', 'myarchive.zip')
background.start()
print('The main program continues to run in foreground.')

background.join()    # Wait for the background task to finish
print('Main program waited until background was done.')

多线程应用面临的主要挑战是,相互协调的多个线程之间需要共享数据或其他资源。为此,threading 模块提供了多个同步操作原语,包括线程锁、事件、条件变量和信号量。

尽管这些工具非常强大,但微小的设计错误却可以导致一些难以复现的问题。因此,实现多任务协作的首选方法是将所有对资源的请求集中到一个线程中,然后使用 queue 模块向该线程供应来自其他线程的请求。 应用程序使用 Queue 对象进行线程间通信和协调,更易于设计,更易读,更可靠。

 

 

 

15 | 多线程调优(上):哪些操作导致了上下文切换? https://time.geekbang.org/column/article/102619

在单个处理器的时期,操作系统就能处理多线程并发任务。处理器给每个线程分配 CPU 时间片(Time Slice),线程在分配获得的时间片内执行任务。CPU 时间片是 CPU 分配给每个线程执行的时间段,一般为几十毫秒。在这么短的时间内线程互相切换,我们根本感觉不到,所以看上去就好像是同时进行的一样。时间片决定了一个线程可以连续占用处理器运行的时长。当一个线程的时间片用完了,或者因自身原因被迫暂停运行了,这个时候,另外一个线程(可以是同一个线程或者其它进程的线程)就会被操作系统选中,来占用处理器。这种一个线程被暂停剥夺使用权,另外一个线程被选中开始或者继续运行的过程就叫做上下文切换(Context Switch)。

具体来说,一个线程被剥夺处理器的使用权而被暂停运行,就是“切出”;一个线程被选中占用处理器开始或者继续运行,就是“切入”。在这种切出切入的过程中,操作系统需要保存和恢复相应的进度信息,这个进度信息就是“上下文”了。

那上下文都包括哪些内容呢?具体来说,它包括了寄存器的存储内容以及程序计数器存储的指令内容。CPU 寄存器负责存储已经、正在和将要执行的任务,程序计数器负责存储 CPU 正在执行的指令位置以及即将执行的下一条指令的位置。在当前 CPU 数量远远不止一个的情况下,操作系统将 CPU 轮流分配给线程任务,此时的上下文切换就变得更加频繁了,并且存在跨 CPU 上下文切换,比起单核上下文切换,跨核切换更加昂贵。

 

 

 

多线程上下文切换诱因

在操作系统中,上下文切换的类型还可以分为进程间的上下文切换和线程间的上下文切换。而在多线程编程中,我们主要面对的就是线程间的上下文切换导致的性能问题,下面我们就重点看看究竟是什么原因导致了多线程的上下文切换。开始之前,先看下系统线程的生命周期状态。

 

结合图示可知,线程主要有“新建”(NEW)、“就绪”(RUNNABLE)、“运行”(RUNNING)、“阻塞”(BLOCKED)、“死亡”(DEAD)五种状态。到了 Java 层面它们都被映射为了 NEW、RUNABLE、BLOCKED、WAITING、TIMED_WAITING、TERMINADTED 等 6 种状态。

 

在这个运行过程中,线程由 RUNNABLE 转为非 RUNNABLE 的过程就是线程上下文切换。

 

一个线程的状态由 RUNNING 转为 BLOCKED ,再由 BLOCKED 转为 RUNNABLE ,然后再被调度器选中执行,这就是一个上下文切换的过程。

 

当一个线程从 RUNNING 状态转为 BLOCKED 状态时,我们称为一个线程的暂停,线程暂停被切出之后,操作系统会保存相应的上下文,以便这个线程稍后再次进入 RUNNABLE 状态时能够在之前执行进度的基础上继续执行。

当一个线程从 BLOCKED 状态进入到 RUNNABLE 状态时,我们称为一个线程的唤醒,此时线程将获取上次保存的上下文继续完成执行。

通过线程的运行状态以及状态间的相互切换,我们可以了解到,多线程的上下文切换实际上就是由多线程两个运行状态的互相切换导致的。

那么在线程运行时,线程状态由 RUNNING 转为 BLOCKED 或者由 BLOCKED 转为 RUNNABLE,这又是什么诱发的呢?

我们可以分两种情况来分析,一种是程序本身触发的切换,这种我们称为自发性上下文切换,另一种是由系统或者虚拟机诱发的非自发性上下文切换。自发性上下文切换指线程由 Java 程序调用导致切出,在多线程编程中,执行调用以下方法或关键字,常常就会引发自发性上下文切换。

sleep()

wait()

yield()

join()

park()

synchronized

lock

非自发性上下文切换指线程由于调度器的原因被迫切出。

常见的有:线程被分配的时间片用完,虚拟机垃圾回收导致或者执行优先级的问题导致。

这里重点说下“虚拟机垃圾回收为什么会导致上下文切换”。在 Java 虚拟机中,对象的内存都是由虚拟机中的堆分配的,在程序运行过程中,新的对象将不断被创建,如果旧的对象使用后不进行回收,堆内存将很快被耗尽。Java 虚拟机提供了一种回收机制,对创建后不再使用的对象进行回收,从而保证堆内存的可持续性分配。而这种垃圾回收机制的使用有可能会导致 stop-the-world 事件的发生,这其实就是一种线程暂停行为。

 

串联的执行速度比并发的执行速度要快。这就是因为线程的上下文切换导致了额外的开销,使用 Synchronized 锁关键字,导致了资源竞争,从而引起了上下文切换,但即使不使用 Synchronized 锁关键字,并发的执行速度也无法超越串联的执行速度,这是因为多线程同样存在着上下文切换。Redis、NodeJS 的设计就很好地体现了单线程串行的优势。

 

至于系统开销具体发生在切换过程中的哪些具体环节,总结如下:操作系统保存和恢复上下文;调度器进行线程调度;处理器高速缓存重新加载;上下文切换也可能导致整个高速缓存区被冲刷,从而带来时间开销。

 

posted @ 2017-11-26 00:29  papering  阅读(608)  评论(0编辑  收藏  举报