Boosting AdaBoosting Algorithm

 

http://math.mit.edu/~rothvoss/18.304.3PM/Presentations/1-Eric-Boosting304FinalRpdf.pdf

 

Consider MIT Admissions

 

 【qualitative quantitative】

2-class system (Admit/Deny)
Both Quantitative Data and Qualitative Data
We consider (Y/N) answers to be Quantitative (-1,+1)
Region, for instance, is qualitative.
 
 
 
Rules of Thumb, Weak Classifiers

 

 

Easy to come up with rules of thumb that correctly classify the training data at
better than chance.
E.g. IF “GoodAtMath”==Y THEN predict “Admit”.
Difficult to find a single, highly accurate prediction rule. This is where our Weak
Learning Algorithm,AdaBoost, helps us.
 
 
 
What is a Weak Learner? 
【generalization error better than random guessing】
For any distribution, with high probability, given polynomially many examples and polynomial time we can find a classifier with generalization error
better than random guessing.
 
 
 
Weak Learning Assumption
 
We assume that our Weak Learning Algorithm (Weak
Learner) can consistently find weak classifiers (rules of
thumb which classify the data correctly at better than 50%)
 
【boosting】
 
Given this assumption, we can use boosting to generate a
single weighted classifier which correctly classifies our
training data at 99%-100%.
 
 
 

 

【AdaBoost Specifics 】
How does AdaBoost weight training examples optimally?
Focus on difficult data points. The data points that have been
misclassified most by the previous weak classifier.
How does AdaBoost combine these weak classifiers into a
comprehensive prediction?
Use an optimally weighted majority vote of weak classifier.
 
 
 
AdaBoost Technical Description
 
 
Missing details: How to generate distribution? How to get single classifier?
 
 
Constructing Dt
 
 
 
 
Getting a Single Classifier

 

 

 

 

 
 
posted @ 2017-11-01 21:46  papering  阅读(318)  评论(0编辑  收藏  举报