分位数 四分位距 分位数回归 箱形图

分位数    四分位距  分位数回归

分位数(Quantile),亦称分位点,是指将一个随机变量概率分布范围分为几个等份的数值点,常用的有中位数(即二分位数)、四分位数百分位数等。

分位数指的就是连续分布函数中的一个点,这个点对应概率p。若概率0<p<1,随机变量X或它的概率分布的分位数Za,是指满足条件p(X≤Za)=α的实数 。、、、

 

分布函数(英文Cumulative Distribution Function, 简称CDF),是概率统计中重要的函数,正是通过它,可用数学分析的方法来研究随机变量。分布函数是随机变量最重要的概率特征,分布函数可以完整地描述随机变量的统计规律,并且决定随机变量的一切其他概率特征。

 

设X是一个随机变量,x是任意实数,函数
 称为X的分布函数。有时也记为
 。
对于任意实数
 ,
 因此,若已知X的分布函数,就可以知道X落在任一区间上的概率,在这个意义上说,分布函数完整地描述了随机变量的统计规律性
如果将X看成是数轴上的随机点的坐标,那么,分布函数F(x)在x处的函数值就表示X落在区间
 上的概率。

 

https://baike.baidu.com/item/箱形图/0?fromModule=lemma_inlink

 

箱形图提供了一种只用5个点对数据集做简单总结的方式。这5个点包括中点、Q1、Q3、分部状态的高位和低位。箱形图很形象的分为中心、延伸以及分布状态的全部范围。
箱形图中最重要的是对相关统计点的计算,相关统计点都可以通过百分位计算方法进行实现。
箱形图的绘制步骤: [2]
1、画数轴,度量单位大小和数据批的单位一致,起点比最小值稍小,长度比该数据批的全距稍长。
2、画一个矩形盒,两端边的位置分别对应数据批的上下四分位数(Q3和Q1)。在矩形盒内部中位数(Xm)位置画一条线段为中位线
3、在Q3+1.5IQR和Q1-1.5IQR处画两条与中位线一样的线段,这两条线段为异常值截断点,称其为内限;在Q3+3IQR和Q1-3IQR处画两条线段,称其为外限。处于内限以外位置的点表示的数据都是异常值,其中在内限与外限之间的异常值为温和的异常值(mild outliers),在外限以外的为极端的异常值(extreme outliers)。四分位距IQR=Q3-Q1。.
4、从矩形盒两端边向外各画一条线段直到不是异常值的最远点,表示该批数据正常值的分布区间。
5、用“〇”标出温和的异常值,用“*”标出极端的异常值。相同值的数据点并列标出在同一数据线位置上,不同值的数据点标在不同数据线位置上。至此一批数据的箱形图便绘出了。统计软件绘制的箱形图一般没有标出内限和外限。
 
 

数据异常值

一批数据中的异常值值得关注,忽视异常值的存在是十分危险的,不加剔除地把异常值包括进数据的计算分析过程中,对结果会带来不良影响;重视异常值的出现,分析其产生的原因,常常成为发现问题进而改进决策的契机。箱形图为我们提供了识别异常值的一个标准:异常值被定义为小于Q1-1.5IQR或大于Q3+1.5IQR的值。虽然这种标准有点任意性,但它来源于经验判断,经验表明它在处理需要特别注意的数据方面表现不错。这与识别异常值的经典方法有些不同。众所周知,基于正态分布的3σ法则或z分数方法是以假定数据服从正态分布为前提的,但实际数据往往并不严格服从正态分布。它们判断异常值的标准是以计算数据批的均值和标准差为基础的,而均值和标准差的耐抗性极小,异常值本身会对它们产生较大影响,这样产生的异常值个数不会多于总数0.7%。显然,应用这种方法于非正态分布数据中判断异常值,其有效性是有限的。箱形图的绘制依靠实际数据,不需要事先假定数据服从特定的分布形式,没有对数据作任何限制性要求,它只是真实直观地表现数据形状的本来面貌;另一方面,箱形图判断异常值的标准以四分位数四分位距为基础,四分位数具有一定的耐抗性,多达25%的数据可以变得任意远而不会很大地扰动四分位数,所以异常值不能对这个标准施加影响,箱形图识别异常值的结果比较客观。由此可见,箱形图在识别异常值方面有一定的优越性。
 
 
 

 

 

 

 

 

 

 

posted @ 2024-10-25 19:10  papering  阅读(33)  评论(0编辑  收藏  举报