Airflow 任务调度

Apache Airflow https://airflow.apache.org/ 

Airflow™ is a platform created by the community to programmatically author, schedule and monitor workflows.

 

from datetime import datetime

from airflow import DAG
from airflow.decorators import task
from airflow.operators.bash import BashOperator

# A DAG represents a workflow, a collection of tasks
with DAG(dag_id="demo", start_date=datetime(2022, 1, 1), schedule="0 0 * * *") as dag:
# Tasks are represented as operators
hello = BashOperator(task_id="hello", bash_command="echo hello")

@task()
def airflow():
print("airflow")

# Set dependencies between tasks
hello >> airflow()

 

 

posted @   papering  阅读(27)  评论(0编辑  收藏  举报
相关博文:
阅读排行:
· 阿里最新开源QwQ-32B,效果媲美deepseek-r1满血版,部署成本又又又降低了!
· 开源Multi-agent AI智能体框架aevatar.ai,欢迎大家贡献代码
· Manus重磅发布:全球首款通用AI代理技术深度解析与实战指南
· 被坑几百块钱后,我竟然真的恢复了删除的微信聊天记录!
· 没有Manus邀请码?试试免邀请码的MGX或者开源的OpenManus吧
历史上的今天:
2023-04-24 WaitGroup:协同等待,任务编排利器
2022-04-24 UDP 通信 无连接 ICMP 路由traceroute原理
2022-04-24 a
2022-04-24 回溯法 深度优先 递归 回溯不一定借助递归
2021-04-24 从Android内存到图片缓存优化
2021-04-24 百度C++工程师的那些极限优化(内存篇)
2021-04-24 享元模式
点击右上角即可分享
微信分享提示