问题 <-time.After(4 * time.Second) 与go程数量的关系 超过一定时间没有收到心跳请求的处理 续期 续租

Golang异步编程方式和技巧 https://mp.weixin.qq.com/s/PuNu65ggHyB6jxRqhbN_VQ

Golang基于多线程、协程实现,与生俱来适合异步编程,当我们遇到那种需要批量处理且耗时的操作时,传统的线性执行就显得吃力,这时就会想到异步并行处理。下面介绍一些异步编程方式和技巧。

作者:zvalhu

一、使用方式

1.1、最简单的最常用的方式:使用go关键词

func main() {
 go func() {
  fmt.Println("hello world1")
 }()
 go func() {
  fmt.Println("hello world2")
 }()
}

或者:

func main() {
 go Announce("hello world1")
 go Announce("hello world2")
}
func Announce(message string) {
 fmt.Println(message)
}

使用匿名函数传递参数

data := "Hello, World!"
go func(msg string) {
      // 使用msg进行异步任务逻辑处理
      fmt.Println(msg)
}(data)

这种方式不需要考虑返回值问题,如果要考虑返回值,可以使用下面的方式。

1.2、通过goroutine和channel来实现

ch := make(chan int, 1) // 创建一个带缓冲的channel
// ch := make(chan int, 0) // 创建一个无缓冲的channel

go func() {
    // 异步任务逻辑
    ch <- result // 将结果发送到channel
    // 异步任务逻辑
    close(ch) // 关闭channel,表示任务完成
}()
// 在需要的时候从channel接收结果
result := <-ch

1.3、使用sync.WaitGroup

sync.WaitGroup用于等待一组协程完成其任务。通过Add()方法增加等待的协程数量,Done()方法标记协程完成,Wait()方法阻塞直到所有协程完成。

var wg sync.WaitGroup

// 启动多个协程
for i := 0; i < 5; i++ {
    wg.Add(1)
    go func(index int) {
        defer wg.Done()
        // 异步任务逻辑
    }(i)
}

// 等待所有协程完成
wg.Wait()

1.4、使用errgroup实现协程组的错误处理

如果想简单获取协程返回的错误,errgroup包很适合,errgroup包是Go语言标准库中的一个实用工具,用于管理一组协程并处理它们的错误。可以使用errgroup.Group结构来跟踪和处理协程组的错误。

var eg errgroup.Group
for i := 0; i < 5; i++ {
    eg.Go(func() error {
     return errors.New("error")
    })

    eg.Go(func() error {
     return nil
    })
}

if err := eg.Wait(); err != nil {
    // 处理错误
}

二、一些使用技巧

2.1、使用channel的range和close操作

range操作可以在接收通道上迭代值,直到通道关闭。可以使用close函数关闭通道,以向接收方指示没有更多的值。

ch := make(chan int)

go func() {
    for i := 0; i < 5; i++ {
        ch <- i // 发送值到通道
    }
    close(ch) // 关闭通道
}()

// 使用range迭代接收通道的值
for val := range ch {
    // 处理接收到的值
}

2.2、使用select语句实现多个异步操作的等待

ch1 := make(chan int)
ch2 := make(chan string)

go func() {
    // 异步任务1逻辑
    ch1 <- result1
}()

go func() {
    // 异步任务2逻辑
    ch2 <- result2
}()

// 在主goroutine中等待多个异步任务完成
select {
case res1 := <-ch1:
    // 处理结果1
case res2 := <-ch2:
    // 处理结果2
}

2.3、使用select和time.After()实现超时控制

如果需要在异步操作中设置超时,可以使用select语句结合time.After()函数实现。

ch := make(chan int)

go func() {
    // 异步任务逻辑
    time.Sleep(2 * time.Second)
    ch <- result
}()

// 设置超时时间
select {
case res := <-ch:
    // 处理结果
case <-time.After(3 * time.Second):
    // 超时处理
}

2.4、使用select和time.After()实现超时控制

如果需要在异步操作中设置超时,可以使用select语句结合time.After()函数实现。

ch := make(chan int)

go func() {
    // 异步任务逻辑
    time.Sleep(2 * time.Second)
    ch <- result
}()

// 设置超时时间
select {
case res := <-ch:
    // 处理结果
case <-time.After(3 * time.Second):
    // 超时处理
}

2.5、使用time.Tick()和time.After()进行定时操作

time.Tick()函数返回一个通道,定期发送时间值,可以用于执行定时操作。time.After()函数返回一个通道,在指定的时间后发送一个时间值。

tick := time.Tick(1 * time.Second) // 每秒执行一次操作

for {
    select {
    case <-tick:
        // 执行定时操作
    }
}

select {
case <-time.After(5 * time.Second):
    // 在5秒后执行操作
}

2.6、使用sync.Mutex或sync.RWMutex进行并发安全访问

当多个协程并发访问共享数据时,需要确保数据访问的安全性。sync.Mutex和sync.RWMutex提供了互斥锁和读写锁,用于在访问共享资源之前进行锁定,以避免数据竞争。sync.RWMutex是一种读写锁,可以在多个协程之间提供对共享资源的并发访问控制。多个协程可以同时获取读锁,但只有一个协程可以获取写锁。

var mutex sync.Mutex
var data int

// 写操作,使用互斥锁保护数据
mutex.Lock()
data = 123
mutex.Unlock()

// 读操作,使用读锁保护数据
//RLock()加读锁时,如果存在写锁,则无法加读锁;当只有读锁或者没有锁时,可以加读锁,读锁可以加载多个
mutex.RLock()
value := data
mutex.RUnlock()

var rwMutex sync.RWMutex
var sharedData map[string]string

// 读操作,使用rwMutex.RLock读锁保护数据
func readData(key string) string {
    rwMutex.RLock()
    defer rwMutex.RUnlock()
    return sharedData[key]
}

// 写操作,使用rwMutex.Lock写锁保护数据
func writeData(key, value string) {
    rwMutex.Lock()
    defer rwMutex.Unlock()
    sharedData[key] = value
}

注意:sync.Mutex 的锁是不可以嵌套使用的 sync.RWMutex 的 RLock()是可以嵌套使用的 sync.RWMutex 的 mu.Lock() 是不可以嵌套的 sync.RWMutex 的 mu.Lock() 中不可以嵌套 mu.RLock()

2.7、使用sync.Cond进行条件变量控制

sync.Cond是一个条件变量,用于在协程之间进行通信和同步。它可以在指定的条件满足之前阻塞等待,并在条件满足时唤醒等待的协程。

var cond = sync.NewCond(&sync.Mutex{})
var ready bool

go func() {
    // 异步任务逻辑
    ready = true

    // 通知等待的协程条件已满足
    cond.Broadcast()
}()

// 在某个地方等待条件满足
cond.L.Lock()
for !ready {
    cond.Wait()
}
cond.L.Unlock()

2.8、使用sync.Pool管理对象池

sync.Pool是一个对象池,用于缓存和复用临时对象,可以提高对象的分配和回收效率。

type MyObject struct {
    // 对象结构
}

var objectPool = sync.Pool{
    New: func() interface{} {
        // 创建新对象
        return &MyObject{}
    },
}

// 从对象池获取对象
obj := objectPool.Get().(*MyObject)

// 使用对象

// 将对象放回对象池
objectPool.Put(obj)

2.9、使用sync.Once实现只执行一次的操作

sync.Once用于确保某个操作只执行一次,无论有多少个协程尝试执行它,常用于初始化或加载资源等场景。

var once sync.Once
var resource *Resource

func getResource() *Resource {
    once.Do(func() {
        // 执行初始化资源的操作,仅执行一次
        resource = initResource()
    })
    return resource
}

// 在多个协程中获取资源
go func() {
    res := getResource()
    // 使用资源
}()

go func() {
    res := getResource()
    // 使用资源
}()

2.10、使用sync.Once和context.Context实现资源清理

可以结合使用sync.Once和context.Context来确保在多个协程之间只执行一次资源清理操作,并在取消或超时时进行清理。

var once sync.Once

func cleanup() {
    // 执行资源清理操作
}

func doTask(ctx context.Context) {
    go func() {
        select {
        case <-ctx.Done():
            once.Do(cleanup) // 只执行一次资源清理
        }
    }()

    // 异步任务逻辑
}

2.11、使用sync.Map实现并发安全的映射

sync.Map是Go语言标准库中提供的并发安全的映射类型,可在多个协程之间安全地进行读写操作。

var m sync.Map

// 存储键值对
m.Store("key", "value")

// 获取值
if val, ok := m.Load("key"); ok {
    // 使用值
}

// 删除键
m.Delete("key")

2.12、使用context.Context进行协程管理和取消

context.Context用于在协程之间传递上下文信息,并可用于取消或超时控制。可以使用context.WithCancel()创建一个可取消的上下文,并使用context.WithTimeout()创建一个带有超时的上下文。

ctx, cancel := context.WithCancel(context.Background())

go func() {
    // 异步任务逻辑
    if someCondition {
        cancel() // 取消任务
    }
}()

// 等待任务完成或取消
select {
case <-ctx.Done():
    // 任务被取消或超时
}

2.13、使用context.WithDeadline()和context.WithTimeout()设置截止时间

context.WithDeadline()和context.WithTimeout()函数可以用于创建带有截止时间的上下文,以限制异步任务的执行时间。

func doTask(ctx context.Context) {
    // 异步任务逻辑

    select {
    case <-time.After(5 * time.Second):
        // 超时处理
    case <-ctx.Done():
        // 上下文取消处理
    }
}

func main() {
    ctx := context.Background()
    ctx, cancel := context.WithTimeout(ctx, 3*time.Second)
    defer cancel()

    go doTask(ctx)

    // 继续其他操作
}

2.14、使用context.WithValue()传递上下文值

context.WithValue()函数可用于在上下文中传递键值对,以在协程之间共享和传递上下文相关的值。

type keyContextValue string

func doTask(ctx context.Context) {
    if val := ctx.Value(keyContextValue("key")); val != nil {
        // 使用上下文值
    }
}

func main() {
    ctx := context.WithValue(context.Background(), keyContextValue("key"), "value")
    go doTask(ctx)

    // 继续其他操作
}

2.15、使用atomic包进行原子操作

atomic包提供了一组函数,用于实现原子操作,以确保在并发环境中对共享变量的读写操作是原子的。

var counter int64

func increment() {
    atomic.AddInt64(&counter, 1)
}

func main() {
    var wg sync.WaitGroup

    for i := 0; i < 100; i++ {
        wg.Add(1)
        go func() {
            defer wg.Done()
            increment()
        }()
    }

    wg.Wait()
    fmt.Println("Counter:", counter)
}

 

 

 

超过一定时间没有收到心跳请求的处理

 问题 <-time.After(4 * time.Second)  与go程数量的关系

import "time"

func mainA() {
    println("A")
    ch := make(chan struct{})
    go func() {
        for {
            select {
            case <-ch:
                println("<-ch ", time.Now().Format(timeLayout))
            case <-time.After(time.Duration(time.Second * 6)):
                println("tm ", time.Now().Format(timeLayout))
            }
        }
    }()
    go func() {
        for {
            ch <- struct{}{}
            println("ch <- struct{}{} ", time.Now().Format(timeLayout))
            time.Sleep(time.Second * 4)
        }
    }()
    for {
        time.Sleep(time.Second)
    }
}

func mainB() {
    println("B")
    ch := make(chan struct{})
    go func() {
        t := time.NewTimer(time.Duration(time.Second * 6))
        defer func() {
            t.Stop()
        }()
        for {
            select {
            case <-ch:
                println("<-ch ", time.Now().Format(timeLayout))
            case <-t.C:
                println("tm ", time.Now().Format(timeLayout))
            }
        }
    }()
    go func() {
        for {
            ch <- struct{}{}
            println("ch <- struct{}{} ", time.Now().Format(timeLayout))
            time.Sleep(time.Second * 4)
        }
    }()
    for {
        time.Sleep(time.Second)
    }
}

const timeLayout = "15:04:05.999999999"

func main() {
    println("C")
    // 收到ping的超时时间
    const SrvReceivePingTimeout = time.Duration(time.Second * 4)
    const SrvReceivePingTimeout_half = time.Duration(time.Second * 2)
    chConnAlive := make(chan struct{}) // 收到了对端了消息、ping,连接还没断开

    go func() {
        t := time.NewTimer(time.Duration(time.Second * 6))
        defer func() {
            t.Stop()
        }()
        for {
            select {
            case <-chConnAlive:
                println("<-chConnAlive ", time.Now().Format(timeLayout))
                // 续期 续租
                t.Reset(SrvReceivePingTimeout)
            case <-t.C:
                println("tm ", time.Now().Format(timeLayout))
            }
        }
    }()
    go func() {
        for {
            chConnAlive <- struct{}{}
            println("chConnAlive <- struct{}{} ", time.Now().Format(timeLayout))
            time.Sleep(SrvReceivePingTimeout_half * 4)
        }
    }()
    for {
        time.Sleep(time.Second)
    }
}

 

 
posted @ 2022-12-14 10:03  papering  阅读(18)  评论(0编辑  收藏  举报