Pull or Push

Pull or Push?监控系统如何选型 https://mp.weixin.qq.com/s/cg6Vd9WxjwVMr_aK5q8sBg

 

Pull or Push?监控系统如何选型

 

 

一  形形色色的监控系统

 

监控一直是IT系统中的核心组成部分,负责问题的发现以及辅助性的定位。无论是传统运维、SRE、DevOps、开发者都需要关注监控系统并参与到监控系统的建设和优化。从最开始大型机的作业系统、Linux基础指标,监控系统就已经开始出现并逐渐演进,现阶段能够搜索到的监控系统不下于上百种,按照不同类别也有非常多的划分方式,例如:
  1. 监控对象:通用型(通用的监控方式,适应于大部分的监控对象),专一型(为某一功能定制,例如Java的JMX系统、CPU的高温保护、硬盘的断电保护、UPS切换系统、交换机监控系统、专线监控等);

  2. 数据获取方式:Push(CollectD、Zabbix、InfluxDB);Pull(Prometheus、SNMP、JMX);

  3. 部署方式:耦合式(和被监控系统在一起部署);单机(单机单实例部署);分布式(可以横向扩展);SaaS化(很多商业的公司提供SaaS的方式,无需部署);

  4. 数据获取方式:接口型(只能通过某些API拿去);DSL(可以有一些计算,例如PromQL、GraphQL);SQL(标准SQL、类SQL);

  5. 商业属性:开源免费(例如Prometheus、InfluxDB单机版);开源商业型(例如InfluxDB集群版、Elastic Search X-Pack);闭源商业型(例如DataDog、Splunk、AWS Cloud Watch);

二  Pull or Push

 

对于建设一套公司内部使用的监控系统平台,相对来说可选的方案还是非常多的,无论是用开源方案自建还是使用商业的SaaS化产品,都有比较多的可选项。但无论是开源方案还是商业的SaaS产品,真正实施起来都需要考虑如何将数据给到监控平台,或者说监控平台如何获取到这些数据。这里就涉及到数据获取方式的选型:Pull(拉)还是Push(推)模式?
图片
基于Pull类型的监控系统顾名思义是由监控系统主动去获取指标,需要被监控的对象能够具备被远端访问的能力;基于Push类型的监控系统不主动获取数据,而是由监控对象主动推送指标。两种方式在非常多的地方都有区别,对于监控系统的建设和选型来说,一定要事先了解这两种方式各自的优劣,选择合适的方案来实施,否则如果盲目实施,后续对监控系统的稳定性和部署运维代价来说将是灾难性的。

三  Pull vs Push概览

 

下面将从几个方面来展开介绍,为了节约读者时间,这里先用一个表格来做概要性的论述,细节在后面会展开:
一级分类 二级分类

Pull

Push

原理与部署 配置

原生中心化配置

端上配置,通过配置中心支持中心化

监控对象发现

依赖服务发现机制,例如Zookeeper、Etcd、Consul等注册中心

由应用、Agent自主上报,无需服务发现模块

部署方式

1. 应用暴露端口,接入服务发现,原生支持Pull协议;

2. 其他系统例如主机、MySQL、NGINX等中间件依赖适配器(也成为Exporter)去抓取指标再提供Pull端口

1. Agent统一代理,抓取主机、MySQL等中间件数据推送到监控系统;Agent也可以作为转发器接收应用推送

2. 应用主动推送到监控系统

扩展性 可扩展性

依赖Pull端扩展;需要Pull Agent和存储解耦(原生Prometheus不支持);Push Agent按照分片划分

简单,本身Agent可横向扩展
能力对比

监控对象存活性

简单

无法区分对象未存活的原因

数据齐全度计算

1. Pull端和存储耦合部署时较简单

2. Pull Agent分布式部署下较困难

较困难

较困难

短生命周期(Job、Serverless)/数据获取实时性

难以适用

适用

指标获取灵活性

On Demand按需获取

被动接受,需要一些过滤器额外支持

应用耦合性

应用与监控系统解耦,应用无需关心Push的对端地址、Push错误处理等

耦合性相比Pull较高

机器、人力代价

资源消耗

1. 应用暴露端口方式资源消耗低

2. Exporter方式资源消耗较高

1. 应用推送方式资源消耗低

2. Agent方式资源消耗较低(可同时采集多套系统)

安全性保证

工作量大,需要保证应用暴露端口的安全性以及Exporter端口的安全性,容易被DDos攻击或者出现数据泄露

低,Agent与服务端一般都进行带有加密、鉴权的数据传输

核心运维消耗

1. Pull Agent稳定性与扩容

2. 服务端稳定性与扩容

3. 服务发现系统稳定性

4. Exporter稳定性与扩容

5. 网络连通性保障(反向连通性,跨集群、网络ACL)

1. Push Agent稳定性

2. 服务端稳定性与扩容

3. 配置中心稳定性与扩容(可选)

4. 网络连通性保障(正向连通性,较简单)


四  原理与架构对比

图片

 

如上图所示,Pull模型数据获取的核心是Pull模块,一般和监控的后端一起部署,例如Prometheus,核心组成包括:
  1. 服务发现系统,包括主机的服务发现(一般依赖于公司内部自己的CMDB系统)、应用服务发现(例如Consul)、PaaS服务发现(例如Kubernetes);Pull模块需要具备对这些服务发现系统的对接能力
  2. Pull核心模块,除了服务发现部分外,一般使用通用协议去远端拉取数据,一般支持配置拉取间隔、超时间隔、指标过滤/Rename/简单的Process能力
  3. 应用侧SDK,支持监听某个固定端口来提供被Pull的能力
  4. 由于各类中间件/其他系统不兼容Pull协议,因此需要开发对应的Exporter的Agent,支持拉取这些系统的指标并提供标准的Pull接口

Push模型相对比较简单:
  1. Push Agent,支持拉取各类被监控对象的指标数据,并推送到服务端,可以和被监控系统耦合部署,也可以单独部署
  2. ConfigCenter(可选),用来提供中心化的动态配置能力,例如监控目标、采集间隔、指标过滤、指标处理、远端目标等
  3. 应用侧SDK,支持发送数据到监控后端,或者发送到本地Agent(通常是本地Agent也实现一套后端的接口)

小结:纯粹从部署复杂性上而言,在中间件/其他系统的监控上,Pull模型的部署方式太过复杂,维护代价较高,使用Push模式较为便捷;应用提供Metrics端口或主动Push部署代价相差不大。

五  Pull的分布式解决方案


图片

 

在扩展性上,Push方式的数据采集天然就是分布式的,在监控后端能力可以跟上的时候,可以无限的横向扩展。相比之下Pull方式扩展较为麻烦,需要:
  1. Pull模块与监控后端解耦,Pull作为Agent单独部署
  2. Pull Agent需要做分布式的协同,一般最简单是做Sharding,例如从服务发现系统处获取被监控的机器列表,对这些机器进行Hash后取模Sharding来决定由哪个Agent来负责Pull。
  3. 新增一个配置中心(可选)用来管理各个PullAgent

相信反应快的同学已经看出来,这种分布式的方式还是有一些问题:
  1. 单点瓶颈还是存在,所有的Agent都需要去请求服务发现模块
  2. Agent扩容后,监控目标会变化,容易产生数据重复或缺失

六  监控能力对比

 

1  监控目标存活性

 

存活性是监控所需要做的第一件也是最基础的工作,Pull模式监控目标存活性相对来说非常简单,直接在Pull的中心端就知道能否请求到目标端的指标,如果失败也能知道一些简单的错误,比如网络超时、对端拒绝连接等。
Push方式相对来说就比较麻烦,应用没有上报可能是应用挂了,也可能是网络问题,也可能是迁移到了其他的节点上了,因为Pull模块可以和服务发现实时联动,但Push没有,所以只有服务端再和服务发现交互才能知道具体失败的原因。

2  数据齐全度计算

 

数据齐全度这个概念在大型的监控系统中还是非常重要的,比如监控一千个副本的交易应用的QPS,这个指标需要结合一千个数据进行叠加,如果没有数据齐全度的概念,若配置QPS相比降低2%告警,由于网络波动,超过20个副本上报的数据延迟几秒,那就会触发误报。因此在配置告警的时候还需要结合数据齐全度数据进行综合考虑。
数据齐全度的计算也一样是依赖于服务发现模块,Pull方式是按照一轮一轮的方式进行拉取,所以一轮拉取完毕后数据就是齐全的,即使部分拉取失败也知道数据不全的百分比是多少;
而Push方式由每个Agent、应用主动Push,每个客户端的Push间隔、网络延迟都不一样,需要服务端去根据历史情况计算数据齐全度,相对代价比较大。

3  短生命周期/Serverless应用监控

 

在实际场景中,短生命周期/Serverless的应用也有很多,尤其是对成本友好的情况下,我们会大量使用Job、弹性实例、无服务应用等,例如渲染型的任务到达后启动一个弹性的计算实例,执行完毕后立马销毁释放;机器学习的训练Job、事件驱动的无服务工作流、定期执行的Job(例如资源清理、容量检查、安全扫描)等。这些应用通常生命周期极短(可能在秒级或毫秒级),Pull的定期模型极难去监控,一般都需要使用Push的方式,由应用主动推送监控数据。
为了应对这种短生命周期的应用,纯Pull的系统都会提供一个中间层(例如Prometheus的Push Gateway):接受应用主动Push,再提供Pull的端口给监控系统。但这就需要额外多个中间层的管理和运维成本,而且由于是Pull模拟Push,上报的延迟会升高而且还需要即使清理这些立即消失的指标。

4  灵活性与耦合度

 

从灵活性上来讲,Pull模式稍微有一些优势,可以在Pull模块配置到底想要哪些指标,对指标做一些简单的计算/二次加工;但这个优势也是相对的,Push SDK/Agent也可以去配置这些参数,借助于配置中心的存在,配置管理起来也是很简单的。
从耦合度上讲,Pull模型和后端的耦合度要低很多,只需要提供一个后端可以理解的接口即可,具体连接哪个后端,后端需要哪些指标等不用关心,相对分工比较明确,应用开发者只需要暴露应用自己的指标即可,由SRE(监控系统管理者)来获取这些指标;Push模型相对来说耦合度要高一些,应用需要配置后端的地址以及鉴权信息等,但如果借助于本地的Push Agent,应用只需要Push本地地址,相对来说代价也并不大。

七  运维与成本对比

 

1  资源成本

 

从整体成本上讲,两种方式总体的差别不大,但从归属方角度来看:
  1. Pull模式核心消耗在监控系统侧,应用侧的代价较低
  2. Push模式核心消耗在推送和Push Agent端,监控系统侧的消耗相比Pull要小很多

2  运维成本

 

从运维角度上讲,相对而言Pull模式的代价要稍高,Pull模式需要运维的组件包括:各类Exporter、服务发现、PullAgent、监控后端;而Push模式只需要运维:Push Agent、监控后端、配置中心(可选,部署方式一般是和监控后端一起)。
  • 这里需要注意的一点是,Pull模式由于是服务端向客户端主动发起请求,网络上需要考虑跨集群连通性、应用侧的网络防护ACL等,相比Push的网络连通性比较简单,只需要服务端提供一个可供各节点访问的域名/VIP即可。

八  Pull or Push如何选型

 

目前开源方案,Pull模式的代表Prometheus的家族方案(之所以称之为家族,主要是默认单点的Prometheus扩展性受限,社区有非常多Prometheus的分布式方案,比如Thanos、VictoriaMetrics、Cortex等),Push模式的代表InfluxDB的TICK(Telegraf, InfluxDB, Chronograf, Kapacitor)方案。这两种方案都有各自的优缺点,在云原生的大背景下,随着Prometheus在CNCF、Kubernetes带领下的大火,很多开源软件都开始提供Prometheus模式的Pull端口;但同时还有很多系统本身设计之初就难以提供Pull端口,这些系统的监控相比而言使用Push Agent方式更为合理。
而应用本身到底该使用Pull还是Push一直没有一个很好的定论,具体的选型还需要根据公司内部的实际场景,例如如果公司集群的网络很复杂,使用Push方式较为简单;有很多短生命周期的应用,需要使用Push方式;移动端应用只能用Push方式;系统本身就用Consul做服务发现,只需要暴露Pull端口就可以很容易实施。
所以综合考虑情况下对于公司内部的监控系统来说,应该同时具备Pull和Push的能力才是最优解:
  1. 主机、进程、中间件监控使用Push Agent;
  2. Kubernetes等直接暴露Pull端口的使用Pull模式;
  3. 应用根据实际场景选择Pull or Push;

九  SLS在Pull和Push上的策略

 

SLS目前支持日志(Log)、时序监控(Metric)、分布式链路追踪(Trace)的统一存储和分析。对于时序监控方案是兼容Prometheus的格式标准,提供的也是标准的PromQL语法。面对数十万SLS的用户,应用场景可能会千差万别,不可能用单一的Pull或Push来对应所有客户需求。因此SLS在Pull和Push的选型上SLS并没有走单一路线,而是兼容Pull和Push模型。此外对于开源社区和Agent,SLS的策略是完全兼容开源生态,而非自己去造一个闭合生态:
  1. Pull模型:完全兼容Prometheus的Pull Scrap能力。可以使用Prometheus的Remote Write,让Prometheus来做Pull的Agent;和Prometheus Scrap一样能力的VMAgent也可以这样使用;SLS自己的Agent Logtail也可以实现Prometheus的Scrap能力
  2. Push模型:目前业界的监控PushAgent生态最完善的当属Telegraf,SLS的Logtail内置了Telegraf,可以支持所有的Telegraf的上百种监控插件
图片
相比VMAgent、Prometheus这类Pull Agent以及原生Telegraf,SLS额外提供了最迫切的Agent配置中心和Agent监控能力,可以在服务端去管理每个Agent的采集配置以及监控这些Agent的运行状态,尽可能降低运维管理代价。
因此实际使用SLS进行监控方案的搭建会非常简单:
  1. 在SLS的控制台(Web页面)去创建一个存储监控数据的MetricStore;
  2. 部署Logtail的Agent(一行命令);
  3. 在控制台上配置监控数据的采集配置(Pull、Push都可以);

十  总结

 

本文主要介绍了监控系统中最纠结的Pull or Push选择问题,笔者结合数年的实际经验以及遇到的各类客户场景对Pull和Push的各类方向进行了比对,仅供大家在监控系统建设过程中参考,也欢迎大家留言和讨论。

 

Push or Pull? https://mp.weixin.qq.com/s/0OWHwv3N9CcgB2atWGMa1A

Push or Pull?

采用Pull模型还是Push模型是很多中间件都会面临的一个问题。消息中间件、配置管理中心等都会需要考虑Client和Server之间的交互采用哪种模型:

  • 服务端主动推送数据给客户端?

  • 客户端主动从服务端拉取数据?

本篇文章对比Pull和Push,结合消息中间件的场景进一步探讨有没有其他更合适的模型。

Push VS Pull

1. Push

Push即服务端主动发送数据给客户端。在服务端收到消息之后立即推送给客户端。

Push模型最大的好处就是实时性。因为服务端可以做到只要有消息就立即推送,所以消息的消费没有“额外”的延迟。

但是Push模式在消息中间件的场景中会面临以下一些问题:

  • 在Broker端需要维护Consumer的状态,不利于Broker去支持大量的Consumer的场景

  • Consumer的消费速度是不一致的,由Broker进行推送难以处理不同的Consumer的状况

  • Broker难以处理Consumer无法消费消息的情况(Broker无法确定Consumer的故障是短暂的还是永久的)

  • 大量的推送消息会加重Consumer的负载或者冲垮Consumer

Pull模式可以很好的应对以上的这些场景。

2.Pull

Pull模式由Consumer主动从Broker获取消息。

这样带来了一些好处:

  • Broker不再需要维护Consumer的状态(每一次pull都包含了其实偏移量等必要的信息)

  • 状态维护在Consumer,所以Consumer可以很容易的根据自身的负载等状态来决定从Broker获取消息的频率

Pull模式还有一个好处是可以聚合消息。

因为Broker无法预测写一条消息产生的时间,所以在收到消息之后只能立即推送给Consumer,所以无法对消息聚合后再推送给Consumer。 而Pull模式由Consumer主动来获取消息,每一次Pull时都尽可能多的获取已近在Broker上的消息。

但是,和Push模式正好相反,Pull就面临了实时性的问题。

因为由Consumer主动来Pull消息,所以实时性和Pull的周期相关,这里就产生了“额外”延迟。如果为了降低延迟来提升Pull的执行频率,可能在没有消息的时候产生大量的Pull请求(消息中间件是完全解耦的,Broker和Consumer无法预测下一条消息在什么时候产生);如果频率低了,那延迟自然就大了。

另外,Pull模式状态维护在Consumer,所以多个Consumer之间需要相互协调,这里就需要引入ZK或者自己实现NameServer之类的服务来完成Consumer之间的协调。

有没有一种方式,能结合Push和Pull的优势,同时变各自的缺陷呢?答案是肯定的。

Long-Polling

使用long-polling模式,Consumer主动发起请求到Broker,正常情况下Broker响应消息给Consumer;在没有消息或者其他一些特殊场景下,可以将请求阻塞在服务端延迟返回。

long-polling不是一种Push模式,而是Pull的一个变种。

那么:

  • 在Broker一直有可读消息的情况下,long-polling就等价于执行间隔为0的pull模式(每次收到Pull结果就发起下一次Pull请求)。

  • 在Broker没有可读消息的情况下,请求阻塞在了Broker,在产生下一条消息或者请求“超时之前”响应请求给Consumer。

以上两点避免了多余的Pull请求,同时也解决Pull请求的执行频率导致的“额外”的延迟。

注意上面有一个概念:“超时之前”。每一个请求都有超时时间,Pull请求也是。“超时之前”的含义是在Consumer的“Pull”请求超时之前。

基于long-polling的模型,Broker需要保证在请求超时之前返回一个结果给Consumer,无论这个结果是读取到了消息或者没有可读消息。

因为Consumer和Broker之间的时间是有偏差的,且请求从Consumer发送到Broker也是需要时间的,所以如果一个请求的超时时间是5秒,而这个请求在Broker端阻塞了5秒才返回,那么Consumer在收到Broker响应之前就会判定请求超时。所以Broker需要保证在Consumer判定请求超时之前返回一个结果。

通常的做法时在Broker端可以阻塞请求的时间总是小于long-polling请求的超时时间。比如long-polling请求的超时时间为30秒,那么Broker在收到请求后最迟在25s之后一定会返回一个结果。中间5s的差值来应对Broker和Consumer的始终存在偏差和网络存在延迟的情况。 (可见Long-Polling模式的前提是Broker和Consumer之间的时间偏差没有“很大”)

Long-Polling还存在什么问题吗,还能改进吗?

Dynamic Push/Pull

“在Broker一直有可读消息的情况下,long-polling就等价于执行间隔为0的pull模式(每次收到Pull结果就发起下一次Pull请求)。”

这是上面long-polling在服务端一直有可消费消息的处理情况。在这个情况下,一条消息如果在long-polling请求返回时到达服务端,那么它被Consumer消费到的延迟是:

假设Broker和Consumer之间的一次网络开销时间为R毫秒,
那么这条消息需要经历3R才能到达Consumer

第一个R:消息已经到达Broker,但是long-polling请求已经读完数据准备返回Consumer,从Broker到Consumer消耗了R
第二个R:Consumer收到了Broker的响应,发起下一次long-polling,这个请求到达Broker需要一个R
的时间
第三个R:Broker收到请求读取了这条数据,那么返回到Consumer需要一个R的时间

所以总共需要3R(不考虑读取的开销,只考虑网络开销)

另外,在这种情况下Broker和Consumer之间一直在进行请求和响应(long-polling变成了间隔为0的pull)。

图片

考虑这样一种方式,它有long-polling的优势,同时能减少在有消息可读的情况下由Broker主动push消息给Consumer,减少不必要的请求。

消息中间件的Consumer实现

在消息中间件的Consumer中会有一个Buffer来缓存从Broker获取的消息,而用户的消费线程从这个Buffer中获取消费来消息,获取消息的线程和消费线程通过这个Buffer进行数据传递。

图片

  • pull线程从服务端获取数据,然后写入到Buffer

  • consume线程从Buffer获取消息进行消费

有这个Buffer的存在,是否可以在long-polling请求时将Buffer剩余空间告知给Broker,由Broker负责推送数据。此时Broker知道最多可以推送多少条数据,那么就可以控制推送行为,不至于冲垮Consumer。

图片

上面这幅图是akka的Dynamic Push/Pull示意图,思路就是每次请求会带上本地当前可以接收的数据的容量,这样在一段时间内可以由Server端主动推送消息给请求方,避免过多的请求。

akka的Dynamic Push/Pull模型非常适合应用到Consumer获取消息的场景。

Broker端对Dynamic Push/Pull的处理流程大致如下:

收到long-polling请求
while(有数据可以消费&请求没超时&Buffer还有容量) {
    读取一批消息
    Push到Consumer
    Buffer-PushedAmount 即减少Buffer容量
}

response long-polling请求
结束(等待下一个long-polling再次开始这个流程)

Consumer端对Dynamic Push/Pull的处理流程大致如下:

收到Broker的响应:

if (long-polling的response) {
    将获取的消息写入Buffer
    获取Buffer的剩余容量和其他状态
    发起新的long-polling请求
} else {
    // Dynamic Push/Pull的推送结果
    将获取的消息写入到Buffer(不发起新的请求)
}

举个例子:

Consumer发起请求时Buffer剩余容量为100,Broker每次最多返回32条消息,那么Consumer的这次long-polling请求Broker将在执行3次push(共push96条消息)之后返回response给Consumer(response包含4条消息)。

如果采用long-polling模型,Consumer每发送一次请求Broker执行一次响应,这个例子需要进行4次long-polling交互(共4个request和4个response,8次网络操作;Dynamic Push/Pull中是1个request,三次push和一个response,共5次网络操作)。

总结:

Dynamic Push/Pull的模型利用了Consumer本地Buffer的容量作为一次long-polling最多可以返回的数据量,相对于long-polling模型减少了Consumer发起请求的次数,同时减少了不必要的延迟(连续的Push之间没有延迟,一批消息到Consumer的延迟就是一个网络开销;long-polling最大会是3个网络开销)。

Dynamic Push/Pull还有一些需要考虑的问题,比如连续推送的顺序性保证,如果丢包了怎么处理之类的问题,有兴趣可以自己考虑一下(也可以私下交流)。

结语

本篇内容比较了Push、Poll、Long-Polling、Dynamic Push/Pull模型。

  • Push模型实时性好,但是因为状态维护等问题,难以应用到消息中间件的实践中。

  • Pull模式实现起来会相对简单一些,但是实时性取决于轮训的频率,在对实时性要求高的场景不适合使用。

  • Long-Polling结合了Push和Pull各自的优势,在Pull的基础上保证了实时性,实现也不会非常复杂,是比较常用的一种实现方案。

  • Dynamic Push/Pull在Long-Polling的基础上,进一步优化,减少更多不必要的请求。但是先对实现起来会复杂一些,需要处理更多的异常情况。

 

参考内容:Google->Reactive Stream Processing with Akka Streams

 

posted @ 2022-05-25 11:15  papering  阅读(282)  评论(0编辑  收藏  举报