gopacket 抓包 过滤器

 

 

//定义过滤器
func getFilter(port uint16) string {
// filter := fmt.Sprintf("udp and ((src port %v) or (dst port %v))", port, port)
filter := fmt.Sprintf("((src port %v) or (dst port %v))", port, port)
return filter
}

 

 

【酷Go推荐】网络流量抓包库 gopacket - 知乎 https://zhuanlan.zhihu.com/p/361737169

网络流量抓包库 gopacket · GoCN社区 https://gocn.vip/topics/11829

一、gopacket 简介

1、gopacket 是什么?

gopacket 是 google 出品的 golang 三方库,质量还是靠的住,项目地址为:github.com/google/gopacket

gopacket 到底是什么呢?是个抓取网络数据包的库,这么说可能还有点抽象,但是抓包工具大家可能都使用过。

Windows 平台下有 Wireshark 抓包工具,其底层抓包库是 npcap(以前是 winpcap);

Linux 平台下有 Tcpdump,其抓包库是 libpcap;

而 gopacket 库可以说是 libpcap 和 npcap 的 go 封装,提供了更方便的 go 语言操作接口。

对于抓包库来说,常规功能就是抓包,而网络抓包有以下几个步骤:

1、枚举主机上网络设备的接口

2、针对某一网口进行抓包

3、解析数据包的 mac 层、ip 层、tcp/udp 层字段等

4、ip 分片重组,或 tcp 分段重组成上层协议如 http 协议的数据

5、对上层协议进行头部解析和负载部分解析

2、应用场景有哪些?

场景 1:网络流量分析

对网络设备流量进行实时采集以及数据包分析。

场景 2:伪造数据包

不少网络安全工具,需要伪造网络数据包,填充上必要的协议字段后发送给对端设备,从而达到一些目的。

场景 3:离线 pcap 文件的读取和写入

二、安装部署

2、1 安装 libpcap 或 npcap 三方库

在使用 gopacket 包时,首先要确保在 windows 平台下安装了 npcap 或 winpcap,或者是在 linux 平台下安装了 libpcap 库。

npcap 下载地址:https://nmap.org/npcap/

libpcap 下载地址:https://www.tcpdump.org/

下载自己电脑对应的操作系统版本的库

如果不想从官网下载 libpcap 库的话,也可以采用 centos 的 yum 命令或 ubuntu 的 apt get 命令来进行安装。

2、2 安装 gopacket 库

go get github.com/google/gopacket

三、使用方法

3、1 枚举网络设备

package main
import (
    "fmt"
    "log"
    "github.com/google/gopacket/pcap"
)
func main() {
    // 得到所有的(网络)设备
    devices, err := pcap.FindAllDevs()
    if err != nil {
        log.Fatal(err)
    }
    // 打印设备信息
    fmt.Println("Devices found:")
    for _, device := range devices {
        fmt.Println("\nName: ", device.Name)
        fmt.Println("Description: ", device.Description)
        fmt.Println("Devices addresses: ", device.Description)
        for _, address := range device.Addresses {
            fmt.Println("- IP address: ", address.IP)
            fmt.Println("- Subnet mask: ", address.Netmask)
        }
    }
}

先调用 pcap.FindAllDevs() 获取当前主机所有的网络设备,网络设备有哪些属性呢?

// Interface describes a single network interface on a machine.
type Interface struct {
    Name        string //设备名称
    Description string //设备描述信息
    Flags       uint32 
    Addresses   []InterfaceAddress //网口的地址信息列表
}
// InterfaceAddress describes an address associated with an Interface.
// Currently, it's IPv4/6 specific.
type InterfaceAddress struct {
    IP        net.IP
    Netmask   net.IPMask // Netmask may be nil if we were unable to retrieve it.
    Broadaddr net.IP     // Broadcast address for this IP may be nil
    P2P       net.IP     // P2P destination address for this IP may be nil
}

3、2 打开一个设备进行抓包

package main
import (
    "fmt"
    "github.com/google/gopacket"
    "github.com/google/gopacket/pcap"
    "log"
    "time"
)
var (
    device       string = "eth0"
    snapshot_len int32  = 1024
    promiscuous  bool   = false
    err          error
    timeout      time.Duration = 30 * time.Second
    handle       *pcap.Handle
)
func main() {
    // 打开某一网络设备
    handle, err = pcap.OpenLive(device, snapshot_len, promiscuous, timeout)
    if err != nil {log.Fatal(err) }
    defer handle.Close()
    // Use the handle as a packet source to process all packets
    packetSource := gopacket.NewPacketSource(handle, handle.LinkType())
    for packet := range packetSource.Packets() {
        // Process packet here
        fmt.Println(packet)
    }
}

1)实时捕获

2、1 节中我们枚举了当前主机的所有网络设备,现在需要打开网络设备并进行实时捕获数据包,需调用 pcap.OpenLive 来打开网络设备,其函数原型如下:

func OpenLive(device string, snaplen int32, promisc bool, timeout time.Duration) (handle *Handle, _ error)

device:网络设备的名称,如 eth0,也可以填充 pcap.FindAllDevs() 返回的设备的 Name

snaplen: 每个数据包读取的最大长度 the maximum size to read for each packet

promisc:是否将网口设置为混杂模式,即是否接收目的地址不为本机的包

timeout:设置抓到包返回的超时。如果设置成 30s,那么每 30s 才会刷新一次数据包;设置成负数,会立刻刷新数据包,即不做等待

函数返回值:是一个 *Handle 类型的返回值,可能作为 gopacket 其他函数调用时作为函数参数来传递。

注意事项:

一定要记得释放掉 handle,如文中的 defer handle.Close()。

2)创建数据包源

packetSource := gopacket.NewPacketSource(handle, handle.LinkType())

第一个参数为 OpenLive 的返回值,指向 Handle 类型的指针变量 handle。

第二个参数为 handle.LinkType() 此参数默认是以太网链路,一般我们抓包,也是从 2 层以太网链路上抓取。

3)读取数据包

//packetSource.Packets()是个channel类型,此处是从channel类型的数据通道中持续的读取网络数据包
for packet := range packetSource.Packets() {
        // Process packet here
        fmt.Println(packet)
    }

3、3 解码数据包的各层

我们可以获取原始数据包,并尝试将其强制转换为已知格式。如 ethernet、IP 和 TCP 层。

Layers 包是 gopacket 的 Go 库中的新功能,在底层 libpcap 库中不存在。它是 gopacket 库的非常有用的一部分。它允许我们轻松地识别数据包是否包含特定类型的层。这个代码示例将演示如何使用 layers 包来查看包是否是 ethernet、IP 和 TCP,以及如何轻松访问这些头中的字段。

package main
import (
    "fmt"
    "github.com/google/gopacket"
    "github.com/google/gopacket/layers"
    "github.com/google/gopacket/pcap"
    "log"
    "strings"
    "time"
)
var (
    device      string = "eth0"
    snapshotLen int32  = 1024
    promiscuous bool   = false
    err         error
    timeout     time.Duration = 30 * time.Second
    handle      *pcap.Handle
)
func main() {
    // Open device
    handle, err = pcap.OpenLive(device, snapshotLen, promiscuous, timeout)
    if err != nil {log.Fatal(err) }
    defer handle.Close()
    packetSource := gopacket.NewPacketSource(handle, handle.LinkType())
    for packet := range packetSource.Packets() {
        printPacketInfo(packet)
    }
}
func printPacketInfo(packet gopacket.Packet) {
    // Let's see if the packet is an ethernet packet
    // 判断数据包是否为以太网数据包,可解析出源mac地址、目的mac地址、以太网类型(如ip类型)等
    ethernetLayer := packet.Layer(layers.LayerTypeEthernet)
    if ethernetLayer != nil {
        fmt.Println("Ethernet layer detected.")
        ethernetPacket, _ := ethernetLayer.(*layers.Ethernet)
        fmt.Println("Source MAC: ", ethernetPacket.SrcMAC)
        fmt.Println("Destination MAC: ", ethernetPacket.DstMAC)
        // Ethernet type is typically IPv4 but could be ARP or other
        fmt.Println("Ethernet type: ", ethernetPacket.EthernetType)
        fmt.Println()
    }
    // Let's see if the packet is IP (even though the ether type told us)
    // 判断数据包是否为IP数据包,可解析出源ip、目的ip、协议号等
    ipLayer := packet.Layer(layers.LayerTypeIPv4)
    if ipLayer != nil {
        fmt.Println("IPv4 layer detected.")
        ip, _ := ipLayer.(*layers.IPv4)
        // IP layer variables:
        // Version (Either 4 or 6)
        // IHL (IP Header Length in 32-bit words)
        // TOS, Length, Id, Flags, FragOffset, TTL, Protocol (TCP?),
        // Checksum, SrcIP, DstIP
        fmt.Printf("From %s to %s\n", ip.SrcIP, ip.DstIP)
        fmt.Println("Protocol: ", ip.Protocol)
        fmt.Println()
    }
    // Let's see if the packet is TCP
    // 判断数据包是否为TCP数据包,可解析源端口、目的端口、seq序列号、tcp标志位等
    tcpLayer := packet.Layer(layers.LayerTypeTCP)
    if tcpLayer != nil {
        fmt.Println("TCP layer detected.")
        tcp, _ := tcpLayer.(*layers.TCP)
        // TCP layer variables:
        // SrcPort, DstPort, Seq, Ack, DataOffset, Window, Checksum, Urgent
        // Bool flags: FIN, SYN, RST, PSH, ACK, URG, ECE, CWR, NS
        fmt.Printf("From port %d to %d\n", tcp.SrcPort, tcp.DstPort)
        fmt.Println("Sequence number: ", tcp.Seq)
        fmt.Println()
    }
    // Iterate over all layers, printing out each layer type
    fmt.Println("All packet layers:")
    for _, layer := range packet.Layers() {
        fmt.Println("- ", layer.LayerType())
    }
    ///.......................................................
    // Check for errors
    // 判断layer是否存在错误
    if err := packet.ErrorLayer(); err != nil {
        fmt.Println("Error decoding some part of the packet:", err)
    }
}

仅仅以此处 tcp 部分的代码详细解析下

// 判断数据包是否为TCP数据包,可解析源端口、目的端口、seq序列号、tcp标志位等
    tcpLayer := packet.Layer(layers.LayerTypeTCP)
    if tcpLayer != nil {
        fmt.Println("TCP layer detected.")
        tcp, _ := tcpLayer.(*layers.TCP)
        fmt.Printf("From port %d to %d\n", tcp.SrcPort, tcp.DstPort)
    }

此处需要研究下源代码中数据结构,以防理解错误

type Packet interface {
    // Layer returns the first layer in this packet of the given type, or nil
    Layer(LayerType) Layer   //根据给定的类型,在数据包中寻找其第一个层
}
//看看Layer的结构
type Layer interface {
    // LayerType is the gopacket type for this layer.
    LayerType() LayerType
    // LayerContents returns the set of bytes that make up this layer.
    LayerContents() []byte
    // LayerPayload returns the set of bytes contained within this layer, not
    // including the layer itself.
    LayerPayload() []byte
}
//tcp数据包格式
type TCP struct {
    BaseLayer
    SrcPort, DstPort                           TCPPort
    Seq                                        uint32
    Ack                                        uint32
    DataOffset                                 uint8
    FIN, SYN, RST, PSH, ACK, URG, ECE, CWR, NS bool
    Window                                     uint16
    Checksum                                   uint16
    Urgent                                     uint16
    sPort, dPort                               []byte
    Options                                    []TCPOption
    Padding                                    []byte
    opts                                       [4]TCPOption
    tcpipchecksum
}

TCP 结构体是实现了 Layer 接口的,其实 Ethernet,IPV4,UDP 等结构体也实现了 Layer 接口

在上述代码中,我们调用函数时,传入的 LayerType 协议层的类型为 layers.LayerTypeTCP,函数返回值为 interface 类型,必须转换成 TCP 结构体

tcp, _ := tcpLayer.(*layers.TCP)

tcp 是 layers.TCP 这个具体类型的指针,通过 tcp 则可以获取数据包中 tcp 协议的相关字段。

3、4 自定义层

自定义层有助于实现当前不包含在 gopacket layers 包中的协议。

import (
    "fmt"
    "github.com/google/gopacket"
)
// 创建自定义层数据结构,并实现Layer接口中的函数LayerType()、LayerContents()、LayerPayload()
type CustomLayer struct {
    // This layer just has two bytes at the front
    SomeByte    byte
    AnotherByte byte
    restOfData  []byte
}
// 注册自定义层类型,然后我们才可以使用它
// 第一个参数是ID. 自定义层使用大于2000的数字,它必须是唯一的
var CustomLayerType = gopacket.RegisterLayerType(
    2001,
    gopacket.LayerTypeMetadata{
        "CustomLayerType",
        gopacket.DecodeFunc(decodeCustomLayer),
    },
)

//自定义层实现LayerType
func (l CustomLayer) LayerType() gopacket.LayerType {
    return CustomLayerType
}

//自定义层实现LayerContents
func (l CustomLayer) LayerContents() []byte {
    return []byte{l.SomeByte, l.AnotherByte}
}

//自定义层实现LayerPayload
func (l CustomLayer) LayerPayload() []byte {
    return l.restOfData
}

//实现自定义的解码函数
func decodeCustomLayer(data []byte, p gopacket.PacketBuilder) error {
    p.AddLayer(&CustomLayer{data[0], data[1], data[2:]})
    return p.NextDecoder(gopacket.LayerTypePayload)
}
func main() {
    rawBytes := []byte{0xF0, 0x0F, 65, 65, 66, 67, 68}
    packet := gopacket.NewPacket(
        rawBytes,
        CustomLayerType,
        gopacket.Default,
    )
    fmt.Println("Created packet out of raw bytes.")
    fmt.Println(packet)
    // Decode the packet as our custom layer
    customLayer := packet.Layer(CustomLayerType)
    if customLayer != nil {
        fmt.Println("Packet was successfully decoded with custom layer decoder.")
        customLayerContent, _ := customLayer.(*CustomLayer)
        // Now we can access the elements of the custom struct
        fmt.Println("Payload: ", customLayerContent.LayerPayload())
        fmt.Println("SomeByte element:", customLayerContent.SomeByte)
        fmt.Println("AnotherByte element:", customLayerContent.AnotherByte)
    }
}

结合上述代码可知,实现自定义的层需要 3 步:

1、创建自定义层的结构体,并实现 Layer 接口中的函数 LayerType()、LayerContents()、LayerPayload()

2、按照解码函数签名来实现自定义解码函数,名称可自行命名。

解码函数签名如下:

type DecodeFunc func([] byte, PacketBuilder) error

3、使用 gopacket.RegisterLayerType 函数来注册自定义层

3、5 TCP 流重组

为什么需要 tcp 流重组?

package main

import (
    "bufio"
    "flag"
    "io"
    "log"
    "net/http"
    "time"

    "github.com/google/gopacket"
    "github.com/google/gopacket/examples/util"
    "github.com/google/gopacket/layers"
    "github.com/google/gopacket/pcap"
    "github.com/google/gopacket/tcpassembly"
    "github.com/google/gopacket/tcpassembly/tcpreader"
)

var iface = flag.String("i", "eth0", "Interface to get packets from")
var snaplen = flag.Int("s", 1600, "SnapLen for pcap packet capture")

// Build a simple HTTP request parser using tcpassembly.StreamFactory and tcpassembly.Stream interfaces

// httpStreamFactory implements tcpassembly.StreamFactory
type httpStreamFactory struct{}

// httpStream will handle the actual decoding of http requests.
type httpStream struct {
    net, transport gopacket.Flow
    r              tcpreader.ReaderStream
}

func (h *httpStreamFactory) New(net, transport gopacket.Flow) tcpassembly.Stream {
    hstream := &httpStream{
        net:       net,
        transport: transport,
        r:         tcpreader.NewReaderStream(),
    }
    go hstream.run() // Important... we must guarantee that data from the reader stream is read.

    // ReaderStream implements tcpassembly.Stream, so we can return a pointer to it.
    return &hstream.r
}

func (h *httpStream) run() {
    buf := bufio.NewReader(&h.r)
    for {
        req, err := http.ReadRequest(buf)
        if err == io.EOF {
            // We must read until we see an EOF... very important!
            return
        } else if err != nil {
            log.Println("Error reading stream", h.net, h.transport, ":", err)
        } else {
            bodyBytes := tcpreader.DiscardBytesToEOF(req.Body)
            req.Body.Close()
            log.Println("Received request from stream", h.net, h.transport, ":", req, "with", bodyBytes, "bytes in request body")
        }
    }
}

func main() {
    defer util.Run()()
    var handle *pcap.Handle
    var err error

    // Set up pcap packet capture
    handle, err = pcap.OpenLive(*iface, int32(*snaplen), true, pcap.BlockForever)
    if err != nil {
        log.Fatal(err)
    }

    // Set up assembly
    streamFactory := &httpStreamFactory{}
    streamPool := tcpassembly.NewStreamPool(streamFactory)
    assembler := tcpassembly.NewAssembler(streamPool)

    // Read in packets, pass to assembler.
    packetSource := gopacket.NewPacketSource(handle, handle.LinkType())
    packets := packetSource.Packets()
    ticker := time.Tick(time.Minute)
    for {
        select {
        case packet := <-packets:
            if packet.NetworkLayer() == nil || packet.TransportLayer() == nil || packet.TransportLayer().LayerType() != layers.LayerTypeTCP {
                log.Println("Unusable packet")
                continue
            }
            tcp := packet.TransportLayer().(*layers.TCP)
            //将数据包进行重组
            assembler.AssembleWithTimestamp(packet.NetworkLayer().NetworkFlow(), tcp, packet.Metadata().Timestamp)

        case <-ticker:
            //每隔一分钟,刷新之前两分钟内不活动的连接
            assembler.FlushOlderThan(time.Now().Add(time.Minute * -2))
        }
    }
}

基本步骤如下:

1、创建 httpStreamFactory 结构体,实现 tcpassembly.StreamFactory 接口

2、创建连接池

streamPool := tcpassembly.NewStreamPool(streamFactory)

3、创建重组器

assembler := tcpassembly.NewAssembler(streamPool)

4、将数据包添加到重组器中

assembler.AssembleWithTimestamp(packet.NetworkLayer().NetworkFlow(), tcp, packet.Metadata().Timestamp)

三、总结

首先,gopacket 库是 google 大厂背书,从使用文档、质量、社区活跃度来说都很不错

其次,使用方式简单,扩展性好。gopacket 提供了自定义的接口,可根据自身需要进行定制化开发

最后,gopacket 定义的 layers 齐全,如果是实时捕获数据后进行协议解析,采用其内置的 layer 即可,无需自己手动去解析繁杂的协议了。

 

 

golang gopacket网络抓包和分析 - 翔云123456 - 博客园 https://www.cnblogs.com/lanyangsh/p/9821106.html

Demo

代码中,抓取与端口3306相关的数据,也就是mysql通信数据。

package main

import(
	"fmt"
	"net"
	"strings"

	"github.com/google/gopacket"
	"github.com/google/gopacket/layers"
	"github.com/google/gopacket/pcap"
)

func main() {

	fmt.Println("packet start...")

	deviceName := "eth0" 
	snapLen := int32(65535)
	port := uint16(3306)
	filter := getFilter(port) 
	fmt.Printf("device:%v, snapLen:%v, port:%v\n", deviceName, snapLen, port)
	fmt.Println("filter:", filter)

	//打开网络接口,抓取在线数据
	handle, err := pcap.OpenLive(deviceName, snapLen, true, pcap.BlockForever)
	if err != nil {
		fmt.Printf("pcap open live failed: %v", err)
		return
	}

	// 设置过滤器
	if err := handle.SetBPFFilter(filter); err != nil {
		fmt.Printf("set bpf filter failed: %v", err)
		return
	}
	defer handle.Close()

	// 抓包
	packetSource := gopacket.NewPacketSource(handle, handle.LinkType())
	packetSource.NoCopy = true
	for packet := range packetSource.Packets() {
		if packet.NetworkLayer() == nil || packet.TransportLayer() == nil || packet.TransportLayer().LayerType() != layers.LayerTypeTCP {
			fmt.Println("unexpected packet")
			continue
		}
		
		fmt.Printf("packet:%v\n",packet)

		// tcp 层
		tcp := packet.TransportLayer().(*layers.TCP)
		fmt.Printf("tcp:%v\n", tcp)		
		// tcp payload,也即是tcp传输的数据
		fmt.Printf("tcp payload:%v\n", tcp.Payload)
	}
}

//定义过滤器
func getFilter(port uint16) string {
 	filter := fmt.Sprintf("tcp and ((src port %v) or (dst port %v))",  port, port)
	return filter
}

抓取到的数据包

packet start...
device:lo0, snapLen:65535, port:3306
filter: tcp and ((src port 3306) or (dst port 3306))

packet:PACKET: 75 bytes, wire length 75 cap length 75 @ 2018-10-20 11:13:00.106452 +0800 CST
- Layer 1 (04 bytes) = Loopback	{Contents=[2, 0, 0, 0] Payload=[..71..] Family=IPv4}
- Layer 2 (20 bytes) = IPv4	{Contents=[..20..] Payload=[..51..] Version=4 IHL=5 TOS=0 Length=71 Id=0 Flags=DF FragOffset=0 TTL=64 Protocol=TCP Checksum=0 SrcIP=172.16.1.103 DstIP=172.16.1.103 Options=[] Padding=[]}
- Layer 3 (32 bytes) = TCP	{Contents=[..32..] Payload=[..19..] SrcPort=50351 DstPort=3306(mysql) Seq=110592366 Ack=3116315438 DataOffset=8 FIN=false SYN=false RST=false PSH=true ACK=true URG=false ECE=false CWR=false NS=false Window=12753 Checksum=23336 Urgent=0 Options=[TCPOption(NOP:), TCPOption(NOP:), TCPOption(Timestamps:1064185591/1064170040 0x3f6e2ef73f6df238)] Padding=[]}
- Layer 4 (19 bytes) = Payload	19 byte(s)

tcp:&{{[196 175 12 234 6 151 129 110 185 191 51 46 128 24 49 209 91 40 0 0 1 1 8 10 63 110 46 247 63 109 242 56] [15 0 0 0 3 115 104 111 119 32 100 97 116 97 98 97 115 101 115]} 50351 3306(mysql) 110592366 3116315438 8 false false false true true false false false false 12753 23336 0 [196 175] [12 234] [TCPOption(NOP:) TCPOption(NOP:) TCPOption(Timestamps:1064185591/1064170040 0x3f6e2ef73f6df238)] [] [{1 1 []} {1 1 []} {8 10 [63 110 46 247 63 109 242 56]} {0 0 []}] {<nil>}}
tcp payload:[15 0 0 0 3 115 104 111 119 32 100 97 116 97 98 97 115 101 115]
。。。

对抓取到的mysql数据感兴趣的同学,可以参考Mysql 通信协议抓包分析

 

posted @ 2021-11-01 13:47  papering  阅读(1443)  评论(0编辑  收藏  举报