禁用 Python GC,Instagram 性能提升10%

 小结:

1、

 

禁用 Python GC,Instagram 性能提升10% - Python - 伯乐在线 http://python.jobbole.com/87447/

通过关闭 Python 垃圾收集(GC)机制,该机制通过收集和释放未使用的数据来回收内存,Instagram 的运行效率提高了 10 %。是的,你没听错!通过禁用 GC,我们可以减少内存占用并提高 CPU 中 LLC 缓存的命中率。如果你对为什么会这样感兴趣,带你发车咯!

我们如何运行 Web 服务器的?

Instagram 的 Web 服务器在多进程模式下运行 Django,使用主进程创建数十个工作(worker)进程,而这些工作进程会接收传入的用户请求。对于应用程序服务器来说,我们使用带分叉模式的 uWSGI 来平衡主进程和工作进程之间的内存共享。

为了防止 Django 服务器运行到 OOM,uWSGI 主进程提供了一种机制,当其 RSS 内存超过预定的限制时重新启动工作进程。

了解内存

我们开始研究为什么 RSS 内存在由主进程产生后会迅速增长。一个观察结果是,RSS 内存即使是从 250 MB 开始的,其共享内存也会下降地非常快,在几秒钟内从 250 MB 到大约 140 MB(共享内存大小可以从/ proc / PID / smaps读取)。这里的数字是无趣的,因为它们随时都会变化,但共享内存下降的规模是非常有趣的 – 大约是总内存 1/3 的。接下来,我们想要了解为什么共享内存,在工作器开始产生时是怎样变为每个进程的私有内存的。

我们的猜测:读取时复制

Linux内核具有一种称为写入时复制(Copy-on-Write,CoW)的机制,用作 fork 进程的优化。一个子进程开始于与其父进程共享每个内存页。而仅当该页面被写入时,该页面才会被复制到子进程内存空间中(有关详细信息,请参阅 wiki https://en.wikipedia.org/wiki/Copy-on-write)。

但在Python领域里,由于引用计数的缘故,事情变得有趣。每次我们读取一个Python对象时,解释器将增加其引用计数,这本质上是对其底层数据结构的写入。这导致 CoW 的发生。因此,我们在使用 Python 时,正在做的即是读取时复制(CoR)!

#define PyObject_HEAD                   
    _PyObject_HEAD_EXTRA                
    Py_ssize_t ob_refcnt;               
    struct _typeobject *ob_type;
...
typedef struct _object {
    PyObject_HEAD
} PyObject;

  

所以问题是:我们在写入时复制的是不可变对象如代码对象吗?假定 PyCodeObject 确实是 PyObject 的“子类”,显然也是这样的。我们的第一想法是禁用 PyCodeObject 的引用计数。

第1次尝试:禁用代码对象的引用计数

在 Instagram 上,我们先做一件简单的事情。考虑到这是一个实验,我们对 CPython 解释器做了一些小的改动,验证了引用计数对代码对象没有变化,然后在我们的一个生产服务器运行 CPython。

结果是令人失望的,因为共享内存没有变化。当我们试图找出原因是,我们意识到我们找不到任何可靠的指标来证明我们的黑客行为起作用,也不能证明共享内存和代码对象的拷贝之间的联系。显然,这里缺少一些东西。获得的教训:在行动之前先验证你的理论。

页面错误分析

在对 Copy-on-Write 这个问题谷歌搜索一番以后,我们了解到 Copy-on-Write 与系统中的页面错误是相关联的。每个 CoW 在运行过程中都可能触发页面错误。Linux 提供的 Perf 工具允许记录硬件/软件系统事件,包括页面错误,甚至可以提供堆栈跟踪!

所以我们用到了一个 prod,重新启动该服务器,等待它 fork,继而得到一个工作进程 PID,然后运行如下命令。

 

posted @ 2019-05-09 02:56  papering  阅读(513)  评论(0编辑  收藏  举报