模反元素 RSA Euler's totient function

 

 

数学基础

p、q 均为质数
e、d 为正整数,且满足两者的乘积除以p、q的欧拉数,即p、q各自减一后的乘积,余数为1
求证:
对于任意正整数,其e次方除以p、q的欧拉数后的d次方为自身。




有四个正整数,p、q 、e、d ,其中前两个为素数,前两个均大于1,四者满足
e*d=1mod(p-1)(q-1),
则对于任意正整数m,{[(m**e)mod(p-1)(q-1)]**d}mod(p-1)(q-1) = m.

 

欧拉定理

 

https://baike.baidu.com/item/欧拉函数/1944850?fr=aladdin

 欧拉函数

数论,对正整数n,欧拉函数是小于n的正整数中与n互质的数的数目(φ(1)=1)。此函数以其首名研究者欧拉命名(Euler's totient function),它又称为Euler's totient function、φ函数、欧拉商数等。 例如φ(8)=4,因为1,3,5,7均和8互质。 从欧拉函数引伸出来在环论方面的事实和拉格朗日定理构成了欧拉定理的证明。

 

质数又称素数。一个大于1的自然数,除了1和它自身外,不能被其他自然数整除的数叫做质数;否则称为合数。

欧拉函数fi:fi(m),不超过m的正整数中与m互质的数的个数。

phi(1)=1
phi(2)=1
phi(3)=2
phi(4)=2
phi(5)=4
phi(6)=2

注意 :

phi(11)=10
phi(13)=12
phi(17)=16
phi(19)=18
....
phi(113)=112
....
对于素数/质数
phi(p)=p-1

 

 

 

https://baike.baidu.com/item/模反元素/20417595

如果两个正整数a和n互质,那么一定可以找到整数b,使得 ab-1 被n整除,或者说ab被n除的余数是1。这时,b就叫做a的“模反元素”

中文名 模反元素 外文名modulo multiplicative inverse 同义词 模逆元素

 

如果两个正整数a和n互质,那么一定可以找到整数b,使得 ab-1 被n整除,或者说ab被n除的余数是1。
这时,b就叫做a对模数n的“模反元素”。比如,3和11互质,那么3的模反元素就是4,因为 (3 × 4)-1 可以被11整除。显然,模反元素不止一个, 4加减11的整数倍都是3的模反元素 {…,-18,-7,4,15,26,…},即如果b是a的模反元素,则 b+kn 都是a的模反元素。
欧拉定理可以用来证明模反元素必然存在。
可以看到,a的 φ(n)-1 次方,就是a对模数n的模反元素。
 
 RSA (cryptosystem) - Wikipedia https://en.wikipedia.org/wiki/RSA_(cryptosystem)
 
算法4步骤

The RSA algorithm involves four steps: key generation, key distribution, encryption and decryption.

 

 

 

 

 Euler's totient function - Wikipedia https://en.wikipedia.org/wiki/Euler%27s_totient_function

 
The first thousand values of φ(n). The points on the top line represent φ(p) when p is a prime number, which is p − 1.[1]

In number theoryEuler's totient function counts the positive integers up to a given integer n that are relatively prime to n. It is written using the Greek letter phi as φ(n) or ϕ(n), and may also be called Euler's phi function. It can be defined more formally as the number of integers k in the range 1 ≤ k ≤ n for which the greatest common divisor gcd(nk) is equal to 1.[2][3] The integers k of this form are sometimes referred to as totatives of n.

For example, the totatives of n = 9 are the six numbers 1, 2, 4, 5, 7 and 8. They are all relatively prime to 9, but the other three numbers in this range, 3, 6, and 9 are not, because gcd(9, 3) = gcd(9, 6) = 3 and gcd(9, 9) = 9. Therefore, φ(9) = 6. As another example, φ(1) = 1 since for n = 1 the only integer in the range from 1 to n is 1 itself, and gcd(1, 1) = 1.

Euler's totient function is a multiplicative function, meaning that if two numbers m and n are relatively prime, then φ(mn) = φ(m)φ(n).[4][5] This function gives the order of the multiplicative group of integers modulo n (the group of units of the ring /n).[6] It also plays a key role in the definition of the RSA encryption system.

 

1>
phi函数
phi(N)为小于正整数N的与N互质的正整数的个数
phi(10)=4
2>
欧拉定理
m(a^phi(n),n)=1
3>
应用
m(7^phi(10),10)=1
==>m(7^4,10)=1
7^222=(7^4)^55*7^2
==>m(7^222,10)=m(1^55,10)*m(7^2,10)=9

 

 

Carmichael number - Wikipedia https://en.wikipedia.org/wiki/Carmichael_number

In number theory, a Carmichael number is a composite number  n which satisfies the modular arithmetic congruence relation:

561=3*11*17
m(561-1,3-1)=m(561-1,11-1)=m(561-1,17-1)
1105=5*13*17
m(1105-1,5-1)=m(1105-1,13-1)=m(1105-1,17-1)

 

In number theory, the Carmichael function associates to every positive integer n a positive integer \lambda (n), defined as the smallest positive integer m such that

 a^{m}\equiv 1{\pmod {n}} for every integer a between 1 and n that is coprime to n.

 

 

 

 

运算速度

由于进行的都是大数计算,使得RSA最快的情况也比DES慢上好几倍,无论是软件还是硬件实现。速度一直是RSA的缺陷。一般来说只用于少量数据加密。RSA的速度是对应同样安全级别的对称密码算法的1/1000左右。 [1] 
比起DES和其它对称算法来说,RSA要慢得多。 [1]  实际上Bob一般使用一种对称算法来加密他的信息,然后用RSA来加密他的比较短的对称密码,然后将用RSA加密的对称密码和用对称算法加密的消息送给Alice。 [2] 
这样一来对随机数的要求就更高了,尤其对产生对称密码的要求非常高,因为否则的话可以越过RSA来直接攻击对称密码。
 
 

 

 

 

 

 

 

 

 

 

posted @ 2018-12-12 15:31  papering  阅读(1070)  评论(0编辑  收藏  举报