Python 进度条模块tqdm

1.简介

在处理大规模数据或长时间运行的任务时,了解任务的进度对于用户体验和调试来说非常重要。tqdm 是一个用于显示进度条的 Python 库,它能将任务的进度信息直观地展示出来。
无论是遍历一个大型列表、处理批量数据,还是下载文件,tqdm 都能轻松实现进度条显示,并且与 Python 的标准库和许多第三方库无缝集成。本文将详细介绍 tqdm 库,
包括其安装方法、主要特性、基本和高级功能,以及实际应用场景,帮助全面了解并掌握该库的使用。 可以通过 pip 直接安装 tqdm: pip install tqdm

2.特性

易于使用:只需添加一行代码即可在循环中显示进度条。
灵活性:支持多种进度条样式和自定义配置。
集成性:与 Python 的标准库(如 time、itertools)和许多第三方库(如 pandas、requests)无缝集成。
多平台支持:兼容 Linux、Windows 和 macOS 系统。
高性能:对性能影响较小,适用于大规模数据处理任务。

3.基本功能

基本用法
1.在遍历一个列表时使用 tqdm 显示进度条:
from tqdm import tqdm
import time
for i in tqdm(range(100)):
    time.sleep(0.1)
输出结果:
100%|██████████| 100/100 [00:10<00:00,  9.57it/s]


2.与enumerate结合使用
在遍历带索引的列表时使用 tqdm:
from tqdm import tqdm
import time
for i, value in enumerate(tqdm(range(100))):
    time.sleep(0.1)
输出结果:
100%|██████████| 100/100 [00:10<00:00,  9.58it/s]
3.自定义进度条描述
可以自定义进度条的描述文字: from tqdm import tqdm import time for i in tqdm(range(100), desc="Processing"): time.sleep(0.1) 输出结果: Processing: 100%|██████████| 100/100 [00:10<00:00, 9.60it/s]

4.高级功能

1.嵌套进度条
tqdm 支持嵌套进度条,适用于多层循环的任务:

from tqdm import tqdm
import time
for i in tqdm(range(3), desc="Outer Loop"):
    for j in tqdm(range(10), desc="Inner Loop", leave=False):
        time.sleep(0.1)
输出结果: Outer Loop:
0%| | 0/3 [00:00<?, ?it/s] Inner Loop: 0%| | 0/10 [00:00<?, ?it/s] Inner Loop: 10%|█ | 1/10 [00:00<00:00, 9.68it/s] Inner Loop: 20%|██ | 2/10 [00:00<00:00, 9.66it/s] Inner Loop: 30%|███ | 3/10 [00:00<00:00, 9.60it/s] Inner Loop: 40%|████ | 4/10 [00:00<00:00, 9.58it/s] Inner Loop: 50%|█████ | 5/10 [00:00<00:00, 9.63it/s] Inner Loop: 60%|██████ | 6/10 [00:00<00:00, 9.72it/s] Inner Loop: 70%|███████ | 7/10 [00:00<00:00, 9.64it/s] Inner Loop: 80%|████████ | 8/10 [00:00<00:00, 9.60it/s] Inner Loop: 90%|█████████ | 9/10 [00:00<00:00, 9.69it/s] Inner Loop: 100%|██████████| 10/10 [00:01<00:00, 9.72it/s] Outer Loop: 33%|███▎ | 1/3 [00:01<00:02, 1.04s/it] Inner Loop: 0%| | 0/10 [00:00<?, ?it/s] Inner Loop: 10%|█ | 1/10 [00:00<00:00, 9.77it/s] Inner Loop: 20%|██ | 2/10 [00:00<00:00, 9.65it/s] Inner Loop: 30%|███ | 3/10 [00:00<00:00, 9.61it/s] Inner Loop: 40%|████ | 4/10 [00:00<00:00, 9.58it/s] Inner Loop: 50%|█████ | 5/10 [00:00<00:00, 9.59it/s] Inner Loop: 60%|██████ | 6/10 [00:00<00:00, 9.57it/s] Inner Loop: 70%|███████ | 7/10 [00:00<00:00, 9.59it/s] Inner Loop: 80%|████████ | 8/10 [00:00<00:00, 9.55it/s] Inner Loop: 90%|█████████ | 9/10 [00:00<00:00, 9.55it/s] Inner Loop: 100%|██████████| 10/10 [00:01<00:00, 9.56it/s] Outer Loop: 67%|██████▋ | 2/3 [00:02<00:01, 1.04s/it] Inner Loop: 0%| | 0/10 [00:00<?, ?it/s] Inner Loop: 10%|█ | 1/10 [00:00<00:00, 9.95it/s] Inner Loop: 20%|██ | 2/10 [00:00<00:00, 9.70it/s] Inner Loop: 30%|███ | 3/10 [00:00<00:00, 9.71it/s] Inner Loop: 40%|████ | 4/10 [00:00<00:00, 9.63it/s] Inner Loop: 50%|█████ | 5/10 [00:00<00:00, 9.60it/s] Inner Loop: 60%|██████ | 6/10 [00:00<00:00, 9.66it/s] Inner Loop: 70%|███████ | 7/10 [00:00<00:00, 9.62it/s] Inner Loop: 80%|████████ | 8/10 [00:00<00:00, 9.58it/s] Inner Loop: 90%|█████████ | 9/10 [00:00<00:00, 9.68it/s] Inner Loop: 100%|██████████| 10/10 [00:01<00:00, 9.67it/s] Outer Loop: 100%|██████████| 3/3 [00:03<00:00, 1.04s/it]

2.与pandas结合使用 tqdm 可以与 pandas 无缝集成,显示 pandas 操作的进度条: import pandas
as pd from tqdm import tqdm tqdm.pandas() df = pd.DataFrame({"a": range(1000)}) df.progress_apply(lambda x: x ** 2)
输出结果:
100%|██████████| 1/1 [00:00<00:00, 622.21it/s]
3.与requests结合使用 tqdm 可以与 requests 结合使用,显示文件下载的进度条: import requests
from tqdm import tqdm url = 'https://example.com/largefile.zip' response = requests.get(url, stream=True) total_size = int(response.headers.get('content-length', 0)) with open('largefile.zip', 'wb') as file, tqdm( desc='Downloading', total=total_size, unit='B', unit_scale=True, unit_divisor=1024, ) as bar: for data in response.iter_content(chunk_size=1024): file.write(data) bar.update(len(data))
输出结果: Downloading:
1.23kB [00:00, 509kB/s]
4.自定义进度条样式 tqdm 允许用户自定义进度条的样式:
from tqdm import tqdm import time for i in tqdm(range(100), bar_format="{l_bar}{bar}| {n_fmt}/{total_fmt}"): time.sleep(0.1)
输出结果:
100%|██████████| 100/100

5.实际应用场景

1.数据处理与分析
在数据处理与分析中,通过 tqdm 显示数据处理的进度,提升用户体验。

from tqdm import tqdm
import pandas as pd
# 加载数据
df = pd.read_csv('large_dataset.csv')
# 数据处理
for index, row in tqdm(df.iterrows(), total=df.shape[0], desc="Processing Data"):
    # 进行一些数据处理操作
    pass
输出结果: Processing Data:
100%|██████████| 242/242 [00:00<00:00, 20854.32it/s]
2.机器学习模型训练 在机器学习模型训练过程中,通过 tqdm 显示训练进度,方便监控和调试。
from tqdm import tqdm import time epochs = 2 batches = 5 for epoch in tqdm(range(epochs), desc="Epochs"): for batch in tqdm(range(batches), desc="Batches", leave=False): # 模拟训练过程 time.sleep(0.1)
输出结果: Epochs:
0%| | 0/2 [00:00<?, ?it/s] Batches: 0%| | 0/5 [00:00<?, ?it/s] Batches: 20%|██ | 1/5 [00:00<00:00, 9.84it/s] Batches: 40%|████ | 2/5 [00:00<00:00, 9.77it/s] Batches: 60%|██████ | 3/5 [00:00<00:00, 9.75it/s] Batches: 80%|████████ | 4/5 [00:00<00:00, 9.69it/s] Batches: 100%|██████████| 5/5 [00:00<00:00, 9.66it/s] Epochs: 50%|█████ | 1/2 [00:00<00:00, 1.94it/s] Batches: 0%| | 0/5 [00:00<?, ?it/s] Batches: 20%|██ | 1/5 [00:00<00:00, 9.74it/s] Batches: 40%|████ | 2/5 [00:00<00:00, 9.78it/s] Batches: 60%|██████ | 3/5 [00:00<00:00, 9.72it/s] Batches: 80%|████████ | 4/5 [00:00<00:00, 9.65it/s] Batches: 100%|██████████| 5/5 [00:00<00:00, 9.58it/s] Epochs: 100%|██████████| 2/2 [00:01<00:00, 1.93it/s]
3.文件下载与上传 在文件下载与上传过程中,通过 tqdm 显示进度条,提升用户体验。 import requests
from tqdm import tqdm url = 'https://example.com/largefile.zip' response = requests.get(url, stream=True) total_size = int(response.headers.get('content-length', 0)) with open('largefile.zip', 'wb') as file, tqdm( desc='Downloading', total=total_size, unit='B', unit_scale=True, unit_divisor=1024, ) as bar: for data in response.iter_content(chunk_size=1024): file.write(data) bar.update(len(data))
输出结果: Downloading:
1.23kB [00:00, 1.21MB/s]

抄自于:https://www.toutiao.com/article/7390572592857416231

 

posted @ 2024-10-31 09:18  百衲本  阅读(178)  评论(0编辑  收藏  举报
cnblogs_post_body { color: black; font: 0.875em/1.5em "微软雅黑" , "PTSans" , "Arial" ,sans-serif; font-size: 15px; } cnblogs_post_body h1 { text-align:center; background: #333366; border-radius: 6px 6px 6px 6px; box-shadow: 0 0 0 1px #5F5A4B, 1px 1px 6px 1px rgba(10, 10, 0, 0.5); color: #FFFFFF; font-family: "微软雅黑" , "宋体" , "黑体" ,Arial; font-size: 23px; font-weight: bold; height: 25px; line-height: 25px; margin: 18px 0 !important; padding: 8px 0 5px 5px; text-shadow: 2px 2px 3px #222222; } cnblogs_post_body h2 { text-align:center; background: #006699; border-radius: 6px 6px 6px 6px; box-shadow: 0 0 0 1px #5F5A4B, 1px 1px 6px 1px rgba(10, 10, 0, 0.5); color: #FFFFFF; font-family: "微软雅黑" , "宋体" , "黑体" ,Arial; font-size: 20px; font-weight: bold; height: 25px; line-height: 25px; margin: 18px 0 !important; padding: 8px 0 5px 5px; text-shadow: 2px 2px 3px #222222; } cnblogs_post_body h3 { background: #2B6695; border-radius: 6px 6px 6px 6px; box-shadow: 0 0 0 1px #5F5A4B, 1px 1px 6px 1px rgba(10, 10, 0, 0.5); color: #FFFFFF; font-family: "微软雅黑" , "宋体" , "黑体" ,Arial; font-size: 18px; font-weight: bold; height: 25px; line-height: 25px; margin: 18px 0 !important; padding: 8px 0 5px 5px; text-shadow: 2px 2px 3px #222222; } 回到顶部 博客侧边栏 回到顶部 页首代码 回到顶部 页脚代码