二叉树



一:术语、定义、特点

1、树

树是一种数据结构,它是由n(n>=1)个有限结点组成一个具有层次关系的集合。

树结构中的术语

  1. 节点的度:节点拥有的子树的数目;

  2. 叶子节点:度为0的节点;

  3. 分支结点:度不为0的节点;

  4. 树的度:树中节点的最大的度;

  5. 层次:根结点的层次为1,其余节点的层次等于该结点的双亲节点的层次加1;

  6. 树的高度:树中节点的最大层次;

  7. 森林:0个或多个不相交的树组成。对森林加上一个根,森林即成为树;删去根,树即成为森林。

2、二叉树

二叉树有五种基本形态,如下图:

2.1 二叉树结构特点

  1. 每个节点最多有两个子树(即二叉树的度不能大于2),并且二叉树的子树有左右之分,其次序不能颠倒;
  2. 没有父节点的节点称为根节点;
  3. 没有子节点的节点称为叶子节点;
  4. 每一个非根节点有且只有一个父节点;
  5. 除了根节点外,每个子节点可以分为多个不相交的子树;
  6. 树里面没有环路。

2.2 二叉树性质

性质1:在二叉树的第 i 层上最多有 2^(i – 1) 个节点; (i>=1)

性质2:深度为 k 的二叉树至多有 2^k – 1 个节点;(k>=1)

性质3:包含n个节点的二叉树的高度至少为(log2n)+1;

性质4:在任意一棵二叉树中,若终端节点的个数为n0,度为2的节点数为n2,则n0=n2+1;

考试时常考性质4的证明

性质4:在任意一棵二叉树中,若终端节点的个数为n0,度为2的节点数为n2,则n0=n2+1。

证明:因为二叉树中所有节点的度数均不大于2,不妨设n0表示度为0的节点个数,n1表示度为1的节点个数,n2表示度为2的节点个数。三类节点加起来为总结点个数,于是便可得到:n=n0+n1+n2 (式1)

由度之间的关系可得第二个等式:n=n00 + n11 + n2*2 + 1,即n=n1+2n2+1 (式2)

合(式1)(式2),移项可得:n0=n2+1,证毕。

3、几种特殊形态的二叉树

3.1 满二叉树

深度为k 且有2^k -1 个节点的二叉树。

已知某二叉树深度为k,则该树最多有2^k - 1个节点;

每层有2^(k-1) 个节点;

3.2 完全二叉树

深度为k,有n个节点的二叉树,其每一个节点都与深度为k 的满二叉树中编号从1 至n 的节点一一对应。

特点:叶子节点只能出现在最下层和次下层,且最下层的叶子节点集中在树的左部。显然,一棵满二叉树必定是一棵完全二叉树,反之不然。

问:如果一个完全二叉树的节点总数为768个,求叶子节点的个数。
答:首先写出公式:768=n0+n1+n2,由二叉树的性质知:n0=n2+1,将之带入前式:768=n1+2n2+1,因为完全二叉树度为1的节点个数要么为0,要么为1,那么就把n1=0或1分别代入公式,发现n1=1才符合条件。从而n2=383,所以叶子节点个数n0=n2+1=384。

总结:如果一棵完全二叉树的节点总数为n,那么叶子节点等于n/2(当n为偶数时)或者(n+1)/2(当n为奇数时)

3.3 平衡二叉树

条件:当且仅当两个子树的高度差不超过1。

3.4 二叉搜索树

又称二叉查找树,节点值域满足:左子树<=根节点<=右子树。

(1)若任意节点的左子树不空,则左子树上所有节点的值均小于它的根节点的值。

(2)任意节点的右子树不空,则右子树上所有节点的值均大于它的根节点的值。

(3)任意节点的左、右子树也分别为二叉查找树。

二:二叉树的代码实现

力扣上二叉树的题,要熟练掌握深搜和广搜。

1、创建节点

class TreeNode(object):
    def __init__(self, x):
        self.val = x
        self.left = None
        self.right = None
Node *node_create(type_t data){
    Node *p = (Node *)malloc(sizeof(Node));
    p->data = data;
    p->left = NULL;
    p->right = NULL;
    return p;
}

2、二叉树的三序遍历(递归+迭代)

2.1 前序遍历

2.1.1 递归法

    def preorderTraversal(self, root):
        """
        :type root: TreeNode
        :rtype: List[int]
        """
        if not root:
            return []
        return [root.val] + self.preorderTraversal(root.left) + self.preorderTraversal(root.right)

2.1.2 迭代法

    def preorderTraversal(self, root):
        """
        :type root: TreeNode
        :rtype: List[int]
        """
        if not root:
            return []
        pre_stack = []
        ans = []
        cur = root
        while pre_stack or cur:
            while cur:
                ans.append(cur.val)
                pre_stack.append(cur)
                cur = cur.left
            temp = pre_stack.pop()
            cur = temp.right
        return ans

迭代另一种写法:

    def preorderTraversal(self, root):
        """
        :type root: TreeNode
        :rtype: List[int]
        """
        if not root:
            return []
        pre_stack = [root]
        ans = []
        while pre_stack:
            cur = pre_stack.pop()
            ans.append(cur.val)
            if cur.right:
                pre_stack.append(cur.right)
            if cur.left:
                pre_stack.append(cur.left)
        return ans

2.2 中序遍历

2.2.1 递归法

    def inorderTraversal(self, root):
        """
        :type root: TreeNode
        :rtype: List[int]
        """
        if not root:
            return []
        return self.inorderTraversal(root.left) + [root.val] + self.inorderTraversal(root.right)

2.2.2 迭代法

    def inorderTraversal(self, root):
        """
        :type root: TreeNode
        :rtype: List[int]
        """
        if not root:
            return []
        mid_stack = []
        ans = []
        cur = root
        while cur or mid_stack:
            while cur:
                mid_stack.append(cur)
                cur = cur.left
            temp = mid_stack.pop()
            ans.append(temp.val)
            cur = temp.right
        return ans

2.3 后序遍历

2.3.1 递归法

    def postorderTraversal(self, root):
        """
        :type root: TreeNode
        :rtype: List[int]
        """
        if not root:
            return []
        return self.postorderTraversal(root.left) + self.postorderTraversal(root.right) + [root.val]

2.3.2 迭代法

    def postorderTraversal(self, root):
        """
        :type root: TreeNode
        :rtype: List[int]
        """
        if not root:
            return []
        ans = []
        post_stack = []
        cur = root
        while post_stack or cur:
            while cur:
                ans.append(cur.val)
                post_stack.append(cur)
                cur = cur.right
            temp = post_stack.pop()
            cur = temp.left
        return ans[::-1]

3、层序遍历

3.1 递归法

    def levelOrder(self, root):
        """
        :type root: TreeNode
        :rtype: List[List[int]]
        """
        if not root:
            return []
        ans = []
        self.dfs(1, root, ans)
        return ans

    def dfs(self, level, root, ans):
        if len(ans) < level:
            ans.append([])
        ans[level - 1].append(root.val)
        if root.left:
            self.dfs(level + 1, root.left, ans)
        if root.right:
            self.dfs(level + 1, root.right, ans)
        return ans

3.2 迭代法

思路:相当于广度优先搜索,使用队列实现。

队列初始化,将根节点压入队列。

当队列不为空,进行如下操作:出队一个节点,访问,若左子节点或右子节点不为空,将其压入队列。

    def levelOrder(self, root):
        """
        :type root: TreeNode
        :rtype: List[List[int]]
        """
        if not root:
            return []
        level_queue = []
        ans = []
        level_queue.append(root)
        while level_queue:
            num = len(level_queue)
            temp = []
            while num > 0:
                cur = level_queue.pop(0)
                temp.append(cur.val)
                if cur.left:
                    level_queue.append(cur.left)
                if cur.right:
                    level_queue.append(cur.right)
                num -= 1
            ans.append(temp)
        return ans

4、求二叉树中的节点数

递归思路:

(1)如果二叉树为空,节点个数为0;

(2)如果二叉树不为空,二叉树节点个数 = 左子树节点个数 + 右子树节点个数 + 1;

    def countNodes(self, root):
        """
        :type root: TreeNode
        :rtype: int
        """
        if not root:
            return 0
        return self.countNodes(root.left) + self.countNodes(root.right) + 1

5、求二叉树的深度

递归思路:

(1)如果二叉树为空,二叉树的深度为0;

(2)如果二叉树不为空,二叉树的深度 = max(左子树深度, 右子树深度) + 1;

    def maxDepth(self, root):
        """
        :type root: TreeNode
        :rtype: int
        """
        if not root:
            return 0
        depthLeft = self.maxDepth(root.left)
        depthRight = self.maxDepth(root.right)
        return depthLeft + 1 if depthLeft > depthRight else depthRight + 1

6、判断二叉树是否是平衡二叉树

递归思路:

(1)如果二叉树为空,返回真;

(2)如果二叉树不为空,如果左子树和右子树都是AVL树并且左子树和右子树高度相差不大于1,返回真,其他返回假;

# 判断平衡二叉树
def isBalanced(self,root):
	"""
	:typeroot:TreeNode
	:rtype:bool
	"""
	if not root:
		return True
	resultLeft = self.isBalanced(root.left)
	heightLeft = self.treeDepth(root.left)
	resultRight = self.isBalanced(root.right)
	heightRight = self.treeDepth(root.right)
	#左子树和右子树都是AVL,并且高度相差不大于1,返回真
	if resultLeft and resultRight and abs(heightLeft-heightRight) <= 1:
		return True
	else:
		return False

#求二叉树的深度
def treeDepth(self,root):
	if not root:
		return 0
	depthLeft = self.treeDepth(root.left)
	depthRight = self.treeDepth(root.right)
return depthLeft + 1 if depthLeft > depthRight else depthRight + 1

7、判断两棵二叉树结构是否相同

不考虑数据内容。结构相同意味着对应的左子树和对应的右子树都结构相同。

递归思路:

(1)如果两棵二叉树都为空,返回真;

(2)如果两棵二叉树一棵为空,另一棵不为空,返回假;

(3)如果两棵二叉树都不为空,如果对应的左子树和右子树都同构返回真,其他返回假;

bool StructureCmp(BinaryTreeNode * pRoot1, BinaryTreeNode * pRoot2){
	// 都为空,返回真
	if(pRoot1 == NULL && pRoot2 == NULL) 
		return true;
	// 有一个为空,一个不为空,返回假
	else if(pRoot1 == NULL || pRoot2 == NULL) 
		return false;
	// 比较对应左子树
	bool resultLeft = StructureCmp(pRoot1->m_pLeft, pRoot2->m_pLeft);  
	bool resultRight = StructureCmp(pRoot1->m_pRight, pRoot2->m_pRight); // 比较对应右子树
	return (resultLeft && resultRight);
}

8、求二叉树第k层节点个数

递归思路:

(1)如果二叉树为空或者k<1返回0;

(2)如果二叉树不为空并且k==1,返回1;

(3)如果二叉树不为空且k>1,返回左子树中k-1层的节点个数与右子树k-1层节点个数之和;

int GetNodeNumKthLevel(BinaryTreeNode * pRoot, int k){
	if(pRoot == NULL || k < 1)
		return 0;
	if(k == 1)
		return 1;
	// 左子树中k-1层的节点个数
	int numLeft = GetNodeNumKthLevel(pRoot->m_pLeft, k-1);  
	// 右子树中k-1层的节点个数
	int numRight = GetNodeNumKthLevel(pRoot->m_pRight, k-1); 
	return (numLeft + numRight);
}

9、求二叉树的叶子节点个数

递归思路:

(1)如果二叉树为空,返回0;

(2)如果二叉树不为空且左右子树为空,返回1;

(3)如果二叉树不为空,且左右子树不同时为空,返回左子树中叶子节点个数加上右子树中叶子节点个数;

int GetLeafNodeNum(BinaryTreeNode * pRoot){
	if(pRoot == NULL)
		return 0;
	if(pRoot->m_pLeft == NULL && pRoot->m_pRight == NULL)
		return 1;
	int numLeft = GetLeafNodeNum(pRoot->m_pLeft); // 左子树中叶节点的个数
	int numRight = GetLeafNodeNum(pRoot->m_pRight); // 右子树中叶节点的个数
	return (numLeft + numRight);
}

10、求二叉树的镜像

递归思路:

(1)如果二叉树为空,返回空;

(2)如果二叉树不为空,求左子树和右子树的镜像,然后交换左子树和右子树;

BinaryTreeNode * Mirror(BinaryTreeNode * pRoot){
	if(pRoot == NULL) // 返回NULL
		return NULL;
	BinaryTreeNode * pLeft = Mirror(pRoot->m_pLeft); // 求左子树镜像
	BinaryTreeNode * pRight = Mirror(pRoot->m_pRight); // 求右子树镜像
      // 交换左子树和右子树
	pRoot->m_pLeft = pRight;
	pRoot->m_pRight = pLeft;
	return pRoot;
}

11、求二叉树中两个节点的最近公共祖先节点

11.1 一般二叉树

python代码:

    # 思路:
    # 先特判:
    #   当节点root为空时:return None;
    #   当p或q的值域等于root时,return root;
    # 再递归判断root的左、右子树;
    #   若左右子树都不为空:return root;
    #   若左真右假:return 左;
    #   若左假右真:return 右;
    #   否则,左右都为空:return None;
    def lowestCommonAncestor(self, root, p, q):
        """
        :type root: TreeNode
        :type p: TreeNode
        :type q: TreeNode
        :rtype: TreeNode
        """
        if not root:
            return None
        # if p.val == q.val:
        #     return p
        if p.val == root.val or q.val == root.val:
            return root
        left = self.lowestCommonAncestor(root.left, p, q)
        right = self.lowestCommonAncestor(root.right, p, q)
        if left and right:
            return root
        elif left:
            return left
        elif right:
            return right
        else:
            return None

方法二:迭代

先求从根节点到两个节点的路径,然后再比较对应路径的节点就行,最后一个相同的节点也就是他们在二叉树中的最低公共祖先节点。

bool GetNodePath(BinaryTreeNode * pRoot, BinaryTreeNode * pNode, 
                 list<BinaryTreeNode *> & path){
	if(pRoot == NULL)
		return false;
    if(pRoot == pNode){	
		path.push_back(pRoot);
		return true;
	}
	path.push_back(pRoot);
	bool found = false;
	found = GetNodePath(pRoot->m_pLeft, pNode, path);
	if(!found)
		found = GetNodePath(pRoot->m_pRight, pNode, path);
	if(!found)
		path.pop_back();
	return found;
}
BinaryTreeNode * GetLastCommonParent(BinaryTreeNode * pRoot, BinaryTreeNode * pNode1, BinaryTreeNode * pNode2){
	if(pRoot == NULL || pNode1 == NULL || pNode2 == NULL)
		return NULL;
	list<BinaryTreeNode*> path1;
	bool bResult1 = GetNodePath(pRoot, pNode1, path1);
	list<BinaryTreeNode*> path2;
	bool bResult2 = GetNodePath(pRoot, pNode2, path2);
	if(!bResult1 || !bResult2) 
		return NULL;
	BinaryTreeNode * pLast = NULL;
	list<BinaryTreeNode*>::const_iterator iter1 = path1.begin();
	list<BinaryTreeNode*>::const_iterator iter2 = path2.begin();
	while(iter1 != path1.end() && iter2 != path2.end()){
		if(*iter1 == *iter2)
			pLast = *iter1;
		else
			break;
		iter1++;
		iter2++;
	}
	return pLast;
}

11.2 二叉搜索树的最近公共祖先结点

方法一:递归

    # 递归思路:
    #   当p,q都在root的右子树中时,递归root.right并返回;
    #   当p,q都在root的左子树中时,递归root.left并返回;
    #   返回值:最近公共祖先root。
    def lowestCommonAncestor(self, root, p, q):
        """
        :type root: TreeNode
        :type p: TreeNode
        :type q: TreeNode
        :rtype: TreeNode
        """
        if p.val < root.val and q.val < root.val:
            return self.lowestCommonAncestor(root.left, p, q)
        if p.val > root.val and q.val > root.val:
            return self.lowestCommonAncestor(root.right, p, q)
        return root

方法二:迭代

    # 迭代思路:
    # 先特判:
    #   当节点root为空时:return None;
    #   当p、q值域相同时,return p 或 return q;
    # 再遍历:
    #   如果,当p,q都在root的右子树中,则遍历至root.right:root = root.right;
    #   否则,当p,q都在root的左子树中,则遍历至root.left:root = root.left;
    #   否则,说明找到了最近公共祖先,则return root。
    def lowestCommonAncestor2(self, root, p, q):
        """
        :type root: TreeNode
        :type p: TreeNode
        :type q: TreeNode
        :rtype: TreeNode
        """
        if not root:
            return None
        if p.val == q.val:
            return p
        while root:
            if p.val > root.val and q.val > root.val:
                root = root.right
            elif p.val < root.val and q.val < root.val:
                root = root.left
            else:
                return root

12、判断二叉树是否为完全二叉树

首先考虑完全二叉树的特点:若设二叉树的深度为h,除第 h 层外,其它各层 (1~h-1) 的结点数都达到最大个数,第 h 层所有的结点都连续集中在最左边,这就是完全二叉树。

可得思路:按层次(从上到下,从左到右)遍历二叉树,当遇到一个节点的左子树为空时,则该节点右子树必须为空,且后面遍历的节点左右子树都必须为空,否则不是完全二叉树。

bool IsCompleteBinaryTree(BinaryTreeNode * pRoot){
	if(pRoot == NULL)
		return false;
	queue<BinaryTreeNode *> q;
	q.push(pRoot);
	bool mustHaveNoChild = false;
	bool result = true;
	while(!q.empty()){
		BinaryTreeNode * pNode = q.front();
		q.pop();
		 // 已经出现了有空子树的节点了,后面出现的必须为叶节点(左右子树都为空)
		if(mustHaveNoChild){
			if(pNode->m_pLeft != NULL || pNode->m_pRight != NULL){
				result = false;
				break;
			}
		}
		else{
			if(pNode->m_pLeft != NULL && pNode->m_pRight != NULL){
				q.push(pNode->m_pLeft);
				q.push(pNode->m_pRight);
			}
			else if(pNode->m_pLeft != NULL && pNode->m_pRight == NULL){
				mustHaveNoChild = true;
				q.push(pNode->m_pLeft);
			}
			else if(pNode->m_pLeft == NULL && pNode->m_pRight != NULL){
				result = false;
				break;
			}
			else{
				mustHaveNoChild = true;
			}
		}
	}
	return result;
}

13、求二叉树的叶子结点

# DFS找二叉树的叶子节点
def dfs(self, root, res):
    if not root:
    	return []
    elif not root.left and not root.right:
    	res.append(root.val)
    else:
        self.dfs(root.left, res)
        self.dfs(root.right, res)
    return res

三、二叉树DFS和BFS代码模板

发现二叉树很多题都是用BFS和DFS做,觉得有必要总结一套代码模板。
所谓模板只是方便套用,按照具体题目要求来随机应变很重要。

3.1 二叉树BFS

    def BFS(self, root):
        # 特判:树根为空
        if not root:
            return []
        # 返回值list
        res = []
        # 设置队列,初始时根入队
        queue = [root]
        # 开始遍历,循环条件:队列不为空
        # 外层的while遍历树的层数
        while queue:
            # 获得当前队列的长度,即当前层节点的个数
            lenQueue = len(queue)
            # 内层for循环遍历当前层的所有节点
            for i in range(lenQueue):
                # 队首节点出队并读取其值域
                node = queue.pop(0)
                res.append(node.val)
                # 将出队节点的子树入队
                if node.left:
                    queue.append(node.left)
                if node.right:
                    queue.append(node.right)
        return res

3.2 二叉树DFS

前序式

    """
    前序遍历式DFS
    """

    # 迭代式
    def pre_DFS(self, root):
        # 特判:树根为空
        if not root:
            return []
        # 返回值
        res = []
        # 设置栈,特点是先进后出,初始时树根入栈
        # 用栈存储下一步可能访问的节点
        stack = []
        cur = root
        while stack or cur:
            while cur:
                res.append(cur.val)
                # 栈是先进后出,所以先进栈右子树
                stack.append(cur)
                cur = cur.left
            temp = stack.pop()
            cur = temp.right
        return res

    # 递归式
    def pre_DFS2(self, root):
        # 特判:树根为空
        if not root:
            return []
        # 返回值
        res = []
        res.append(root.val)
        res += self.pre_DFS2(root.left)
        res += self.pre_DFS2(root.right)
        return res

中序式

    """
    中序遍历式DFS
    """
    # 迭代式
    def mid_DFS(self, root):
        # 特判:树根为空
        if not root:
            return []
        # 返回值
        res = []
        # 设置栈,特点是先进后出,初始时树根入栈
        # 用栈存储下一步可能访问的节点
        stack = []
        cur = root
        while stack or cur:
            while cur:
                stack.append(cur)
                cur = cur.left
            res.append(cur.val)
            temp = stack.pop()
            cur = temp.right
        return res

    # 递归式
    def mid_DFS2(self, root):
        # 特判:树根为空
        if not root:
            return []
        # 返回值
        res = []
        res += self.mid_DFS2(root.left)
        res.append(root.val)
        res += self.mid_DFS2(root.right)
        return res

后序式

    """
    后序遍历式DFS
    """
    # 迭代式
    def post_DFS(self, root):
        # 特判:树根为空
        if not root:
            return []
        # 返回值
        res = []
        cur = root
        stack = []
        while cur or stack:
            while cur:
                res.append(cur.val)
                stack.append(cur)
                cur = cur.right
            temp = stack.pop()
            cur = temp.left
        return res[::-1]
    
    # 递归式
    def post_DFS2(self, root):
        # 特判:树根为空
        if not root:
            return []
        # 返回值
        res = []
        res += self.post_DFS2(root.left)
        res += self.post_DFS2(root.right)
        res.append(root.val)
        return res
posted @ 2020-06-08 14:51  人间烟火地三鲜  阅读(763)  评论(0编辑  收藏  举报