【BJOI2006】狼抓兔子


P2030 - 【BJOI2006】狼抓兔子


Description

现在小朋友们最喜欢的"喜羊羊与灰太狼",话说灰太狼抓羊不到,但抓兔子还是比较在行的,而且现在的兔子还比较笨,它们只有两个窝,现在你做为狼王,面对下面这样一个网格的地形:

P

左上角点为(1,1),右下角点为(N,M)(上图中N=4,M=5).有以下三种类型的道路
1:(x,y)<==>(x+1,y)
2:(x,y)<==>(x,y+1)
3:(x,y)<==>(x+1,y+1)
道路上的权值表示这条路上最多能够通过的兔子数,道路是无向的. 左上角和右下角为兔子的两个窝,开始时所有的兔子都聚集在左上角(1,1)的窝里,现在它们要跑到右下解(N,M)的窝中去,狼王开始伏击这些兔子.当然 为了保险起见,如果一条道路上最多通过的兔子数为K,狼王需要安排同样数量的K只狼,才能完全封锁这条道路,你需要帮助狼王安排一个伏击方案,使得在将兔 子一网打尽的前提下,参与的狼的数量要最小。因为狼还要去找喜羊羊麻烦.


Input

第一行为N,M.表示网格的大小,N,M均小于等于1000.接下来分三部分 第一部分共N行,每行M-1个数,表示横向道路的权值.

第二部分共N-1行,每行M个数,表示纵向道路的权值. 第三部分共N-1行,每行M-1个数,表示斜向道路的权值. 输入保证不超过10M


Output

输出一个整数,表示参与伏击的狼的最小数量.


Sample Input

3 4
5 6 4
4 3 1
7 5 3
5 6 7 8
8 7 6 5
5 5 5
6 6 6


Sample Output

14


首先的想法是将每条边都连上跑最大流,但是边数太多,肯定会超时。
所以要注意到这个图的一个特殊的性质,这是一个平面图。
平面图的定义:平面图是可以画在平面上并且使得不同的边可以互不交叠的图。
平面图的面=边数-点数+2
构造对偶图:G的对偶图G*构造如下:

G的每一个面Ri中放置一个顶点vi*.eG的一条边,若eG的面RiRj的公共边界上,则作边e*=(vi*,vj*)e相交,且不与其他任何边相交。若eG中的桥且在面Ri的边界上,则作以vi*为端点的环e*=(vi*,vj*)

平面图最小割定理:
先在源点与汇点之间连一条虚拟边,然后构造对偶图,S*为那个虚拟边与实边形成的面,T*为那个最大面,然后构造对偶图。
于是有一条重要的定理:原图的最大流等于对偶图的S*T*的最短路。
证明:
首先,最大流=最小割。
观察对偶图与原图的关系发现,S*T*直间的每一条路径都会形成一个割,这个割 的容量就等于路径上的权值和。
所以最短路径即为最小割。
这个用SPFA或者堆dijkstra求出即可。
#include<set>
#include<map>
#include<queue>
#include<stack>
#include<ctime>
#include<cmath>
#include<string>
#include<vector>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
#define maxn 1000*1000
using namespace std;
struct data{
  int nex,to,w;
}e[maxn*6+10];
int head[maxn],edge=0,dis[maxn],vis[maxn];
void add(int from,int to,int w){
  e[++edge].nex=head[from];
  e[edge].w=w;
  e[edge].to=to;
  head[from]=edge;
}
queue<int>q;
void SPFA(int s,int t){
  memset(dis,127,sizeof(dis));
  q.push(s);
  dis[s]=0;vis[s]=1;
  while(!q.empty()){
    int u=q.front();q.pop();
    vis[u]=0;
    for(int i=head[u];i;i=e[i].nex){
      int v=e[i].to;
      if(dis[v]>dis[u]+e[i].w){
    dis[v]=dis[u]+e[i].w;
    if(!vis[v]) q.push(v),vis[v]=1;
      }
    }
  }
  printf("%d",dis[t]);
}
int main()
{
  freopen("!.in","r",stdin);
  freopen("!.out","w",stdout);
  int n,m,x;scanf("%d%d",&n,&m);
  int s=0,t=2*(n-1)*(m-1)+1;
  int op=1;
  for(int i=1;i<=n;i++){
    for(int j=1;j<m;j++){
      scanf("%d",&x);
      int oq=op-(m-1);int oq1,op1;
      if(oq<=s) oq1=s;else oq1=oq;
      if(op>=t) op1=t;else op1=op;
      add(oq1,op1,x);add(op1,oq1,x);
      op++;
    }
    op+=(m-1);
  }
  op=m;
  for(int i=1;i<n;i++){
    for(int j=1;j<=m;j++){
      scanf("%d",&x);
      int oq=op-m;int oq1,op1;
      if(oq<=2*(i-1)*(m-1)) oq1=t;else oq1=oq;
      if(op>2*i*(m-1)) op1=s;else op1=op;
      add(op1,oq1,x);add(oq1,op1,x);
      op++;
    }
    op+=(m-2);
  }
  op=1;
  for(int i=1;i<n;i++){
    for(int j=1;j<m;j++){
      scanf("%d",&x);
      add(op,op+m-1,x);add(op+m-1,op,x);
      op++;
    }
    op+=(m-1);
  }
  SPFA(s,t);
  return 0;
}

 

 
posted @ 2017-03-23 08:54  嘘丶  阅读(486)  评论(0编辑  收藏  举报