Cantor展开式
X=an*(n-1)!+an-1*(n-2)!+...+ai*(i-1)!+...+a2*1!+a1*0! 其中,a为整数,并且0<=ai<i(1<=i<=n)。这就是康托展开。康托展开可用代码实现。
康托展开的应用实例:
{1,2,3,4,...,n}表示1,2,3,...,n的排列 如 {1,2,3} 按从小到大排列一共6个。123 132 213 231 312 321 。
代表的数字 1 2 3 4 5 6 也就是把10进制数与一个排列对应起来。
他们间的对应关系可由康托展开来找到。
如我想知道321是{1,2,3}中第几个大的排列可以这样考虑 :
第一位是3,当第一位的数小于3时,那排列数小于321 如 123、 213 ,小于3的数有1、2 。所以有2*2!个。再看小于第二位2的:小于2的数只有一个就是1 ,所以有1*1!=1 所以小于321的{1,2,3}排列数有2*2!+1*1!=5个。所以321是第6个大的数。 2*2!+1*1!+1*0!就是康托展开。
再举个例子:1324是{1,2,3,4}排列数中第几个大的数:第一位是1小于1的数没有,是0个 0*3! 第二位是3小于3的数有1和2,但1已经在第一位了,所以只有一个数2 1*2! 。第三位是2小于2的数是1,但1在第一位,所以有0个数 0*1! ,所以比1324小的排列有0*3!+1*2!+0*1!=2个,1324是第三个大数。
#include <iostream> #include <string> using namespace std; const int SIZE = 12; const string END = "-1"; int factory[SIZE] = { 0, 1, 2, 6, 24, 120,720, 5040, 40320, 362880, 3628800,39916800 }; int main(){ while( true ){ string val; int pos = 0; cin>>val; if( val == END ) break; const int size = val.length(); for( int i = 0; i < val.length(); ++i ){ int count = 0; for( int j = i + 1; j < val.length(); ++j ){ if( val[i] > val[j] ) count++; } pos += count * factory[size - i - 1]; } cout<<val<<" is in the position of : "<<pos + 1<<endl; } return 0; }