poj 3266 Cow School 分数规划

这个题目难度非常大,首先对于老师的一种方案,应用分数规划的一般做法,求出所有的c=t-rate*p,如果没有选择的c值中的最大值比选择了的c值中的最小值大,那么这个解是可以改进的。

那么问题就转化成了怎么求最小的c和最大的c。

t-rate*p 求这种类型的最值,并且rate是单调的,那么就可以考虑利用斜率优化的那种办法来维护决策点。

考虑两个决策点,得到ti-tj>rate(pi-pj)  但是这个pi pj的大小不能确定,我们知道可以利用斜率优化的问题不仅仅要rate单调,还需要pi 单调 这个时候我们需要利用题目中的条件,题目中保证了t/p单调,根据这个条件,可以推出求两种最值的时候都只有单调的p才是有可能成为决策点的。那么就可以按照斜率优化步骤来解题了。一个是用单调栈维护,另外一个利用单调队列维护。

 

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int maxn=5e4+9;
double high[maxn],low[maxn];
long long sumt[maxn],sump[maxn];
struct D
{
    long long t,p;
    bool operator <(const D & xx) const
    {
        return t*xx.p>xx.t*p;
    }
}test[maxn];
int que[maxn];

bool chk(int i,int j,int t,int s)
{
    long long a=(test[i].t-test[j].t)*(test[t].p-test[s].p);
    long long b=(test[t].t-test[s].t)*(test[i].p-test[j].p);
    return a>b;
}

bool chk2(int i,int j,long long t,long long p)
{
    long long a=(test[i].t-test[j].t)*p;
    long long b=t*(test[i].p-test[j].p);
    return a>b;
}
int main()
{
    int n;
    while(scanf("%d",&n)!=EOF)
    {
        for(int i=1;i<=n;i++)
        scanf("%lld %lld",&test[i].t,&test[i].p);
        sort(test+1,test+1+n);

        for(int i=1;i<=n;i++)
        {
            sumt[i]=sumt[i-1]+test[i].t;
            sump[i]=sump[i-1]+test[i].p;
        }

        int front=1,end=0;
        for(int i=1;i<=n;i++)
        {
            while(end>=front&&test[i].p>=test[que[end]].p)
            end--;
            while(end>front&&chk(que[end],i,que[end-1],que[end]))
            end--;
            que[++end]=i;
            while(front<end&&chk2(que[front],que[front+1],sumt[i],sump[i])==1)
            front++;
            int u=que[front];
            low[i]=test[u].t-(double)sumt[i]/sump[i]*test[u].p;
        }
        int top=0;
        for(int i=n;i>=1;i--)
        {
            while(top>0&&test[i].p<=test[que[top]].p)
            top--;
            while(top>1&&chk(i,que[top],que[top],que[top-1]))
            top--;
            que[++top]=i;
            while(top>1&&chk2(que[top],que[top-1],sumt[i-1],sump[i-1])==0)
            top--;
            int u=que[top];
            high[i]=test[u].t-(double)sumt[i-1]/sump[i-1]*test[u].p;
        }
        int ans=0;
        for(int i=1;i<n;i++)
        if(high[i+1]>low[i])
        ans++;
        cout<<ans<<endl;
        for(int i=n-1;i>=1;i--)
        if(high[i+1]>low[i])
        printf("%d\n",n-i);
    }
    return 0;
}


 

 

 

posted @ 2013-09-11 20:07  pangbangb  阅读(467)  评论(0编辑  收藏  举报