Twenty Newsgroups Classification任务之二seq2sparse
seq2sparse对应于mahout中的org.apache.mahout.vectorizer.SparseVectorsFromSequenceFiles,从昨天跑的算法中的任务监控界面可以看到这一步包含了7个Job信息,分别是:(1)DocumentTokenizer(2)WordCount(3)MakePartialVectors(4)MergePartialVectors(5)VectorTfIdf Document Frequency Count(6)MakePartialVectors(7)MergePartialVectors。打印SparseVectorsFromSequenceFiles的参数帮助信息可以看到如下的信息:
Usage: [--minSupport <minSupport> --analyzerName <analyzerName> --chunkSize <chunkSize> --output <output> --input <input> --minDF <minDF> --maxDFSigma <maxDFSigma> --maxDFPercent <maxDFPercent> --weight <weight> --norm <norm> --minLLR <minLLR> --numReducers <numReducers> --maxNGramSize <ngramSize> --overwrite --help --sequentialAccessVector --namedVector --logNormalize] Options --minSupport (-s) minSupport (Optional) Minimum Support. Default Value: 2 --analyzerName (-a) analyzerName The class name of the analyzer --chunkSize (-chunk) chunkSize The chunkSize in MegaBytes. 100-10000 MB --output (-o) output The directory pathname for output. --input (-i) input Path to job input directory. --minDF (-md) minDF The minimum document frequency. Default is 1 --maxDFSigma (-xs) maxDFSigma What portion of the tf (tf-idf) vectors to be used, expressed in times the standard deviation (sigma) of the document frequencies of these vectors. Can be used to remove really high frequency terms. Expressed as a double value. Good value to be specified is 3.0. In case the value is less then 0 no vectors will be filtered out. Default is -1.0. Overrides maxDFPercent --maxDFPercent (-x) maxDFPercent The max percentage of docs for the DF. Can be used to remove really high frequency terms. Expressed as an integer between 0 and 100. Default is 99. If maxDFSigma is also set, it will override this value. --weight (-wt) weight The kind of weight to use. Currently TF or TFIDF --norm (-n) norm The norm to use, expressed as either a float or "INF" if you want to use the Infinite norm. Must be greater or equal to 0. The default is not to normalize --minLLR (-ml) minLLR (Optional)The minimum Log Likelihood Ratio(Float) Default is 1.0 --numReducers (-nr) numReducers (Optional) Number of reduce tasks. Default Value: 1 --maxNGramSize (-ng) ngramSize (Optional) The maximum size of ngrams to create (2 = bigrams, 3 = trigrams, etc) Default Value:1 --overwrite (-ow) If set, overwrite the output directory --help (-h) Print out help --sequentialAccessVector (-seq) (Optional) Whether output vectors should be SequentialAccessVectors. If set true else false --namedVector (-nv) (Optional) Whether output vectors should be NamedVectors. If set true else false --logNormalize (-lnorm) (Optional) Whether output vectors should be logNormalize. If set true else false
在昨天算法的终端信息中该步骤的调用命令如下:
./bin/mahout seq2sparse -i /home/mahout/mahout-work-mahout/20news-seq -o /home/mahout/mahout-work-mahout/20news-vectors -lnorm -nv -wt tfidf
我们只看对应的参数,首先是-lnorm 对应的解释为输出向量是否要使用log函数进行归一化(设置则为true),-nv解释为输出向量被设置为named 向量,这里的named是啥意思?(暂时不清楚),-wt tfidf解释为使用权重的算法,具体参考 http://zh.wikipedia.org/wiki/TF-IDF 。
第(1)步在SparseVectorsFromSequenceFiles的253行的:
DocumentProcessor.tokenizeDocuments(inputDir, analyzerClass, tokenizedPath, conf);
这里进入可以看到使用的Mapper是:SequenceFileTokenizerMapper,没有使用Reducer。Mapper的代码如下:
protected void map(Text key, Text value, Context context) throws IOException, InterruptedException { TokenStream stream = analyzer.reusableTokenStream(key.toString(), new StringReader(value.toString())); CharTermAttribute termAtt = stream.addAttribute(CharTermAttribute.class); StringTuple document = new StringTuple(); stream.reset(); while (stream.incrementToken()) { if (termAtt.length() > 0) { document.add(new String(termAtt.buffer(), 0, termAtt.length())); } } context.write(key, document); }
该Mapper的setup函数主要设置Analyzer的,关于Analyzer的api参考: http://lucene.apache.org/core/3_0_3/api/core/org/apache/lucene/analysis/Analyzer.html ,其中在map中用到的函数为 reusableTokenStream( String fieldName, Reader reader) :Creates a TokenStream that is allowed to be re-used from the previous time that the same thread called this method.
编写下面的测试程序:
package mahout.fansy.test.bayes; import java.io.IOException; import java.io.StringReader; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.io.Text; import org.apache.lucene.analysis.Analyzer; import org.apache.lucene.analysis.TokenStream; import org.apache.lucene.analysis.tokenattributes.CharTermAttribute; import org.apache.mahout.common.ClassUtils; import org.apache.mahout.common.StringTuple; import org.apache.mahout.vectorizer.DefaultAnalyzer; import org.apache.mahout.vectorizer.DocumentProcessor; public class TestSequenceFileTokenizerMapper { /** * @param args */ private static Analyzer analyzer = ClassUtils.instantiateAs("org.apache.mahout.vectorizer.DefaultAnalyzer", Analyzer.class); public static void main(String[] args) throws IOException { testMap(); } public static void testMap() throws IOException{ Text key=new Text("4096"); Text value=new Text("today is also late.what about tomorrow?"); TokenStream stream = analyzer.reusableTokenStream(key.toString(), new StringReader(value.toString())); CharTermAttribute termAtt = stream.addAttribute(CharTermAttribute.class); StringTuple document = new StringTuple(); stream.reset(); while (stream.incrementToken()) { if (termAtt.length() > 0) { document.add(new String(termAtt.buffer(), 0, termAtt.length())); } } System.out.println("key:"+key.toString()+",document"+document); } }
得出的结果如下:
key:4096,document[today, also, late.what, about, tomorrow]
其中,TokenStream有一个stopwords属性,值为:[but, be, with, such, then, for, no, will, not, are, and, their, if, this, on, into, a, or, there, in, that, they, was, is, it, an, the, as, at, these, by, to, of],所以当遇到这些单词的时候就不进行计算了。
额,又太晚了。哎,早困了,刷个牙线。。。
分享,快乐,成长
转载请注明出处:http://blog.csdn.net/fansy1990