Hive中视图机制的初步使用及分析
作者: 大圆那些事 | 文章可以转载,请以超链接形式标明文章原始出处和作者信息
网址: http://www.cnblogs.com/panfeng412/archive/2013/04/29/hive-view-usage-and-analysis.html
本文是对Hive中逻辑视图的介绍,通过一个简单的视图例子,说明其使用方法及执行过程。
Hive 0.6版本及以上支持视图(View,详见Hive的RELEASE_NOTES.txt),Hive View具有以下特点:
1)View是逻辑视图,暂不支持物化视图(后续将在1.0.3版本以后支持);
2)View是只读的,不支持LOAD/INSERT/ALTER。需要改变View定义,可以是用Alter View;
3)View内可能包含ORDER BY/LIMIT语句,假如一个针对View的查询也包含这些语句, 则View中的语句优先级高;
4)支持迭代View。
CDH4中自带的Hive版本为0.10.0,支持的View是逻辑视图,因此本质上来说View只是为了使用上的方便,从执行效率上来说没有区别,甚至可能因为要多一次对MetaStore元数据的操作效率略有下降(这里只是一种理论上的推测,实际可能看不出太大区别)。
下面是简单的验证过程(感兴趣的可以看下,以下过程如有问题,可以一起交流):
1)创建一个测试表:
hive> create table test (id int, name string); OK Time taken: 0.19 seconds hive> desc test; OK id int name string Time taken: 0.16 seconds
2)创建一个View之前,使用explain命令查看创建View的命令是如何被Hive解释执行的:
hive> explain create view test_view (id, name_length) as select id, length(name) from test; OK ABSTRACT SYNTAX TREE: (TOK_CREATEVIEW (TOK_TABNAME test_view) (TOK_TABCOLNAME (TOK_TABCOL id TOK_NULL) (TOK_TABCOL name_length TOK_NULL)) (TOK_QUERY (TOK_FROM (TOK_TABREF (TOK_TABNAME test))) (TOK_INSERT (TOK_DESTINATION (TOK_DIR TOK_TMP_FILE)) (TOK_SELECT (TOK_SELEXPR (TOK_TABLE_OR_COL id)) (TOK_SELEXPR (TOK_FUNCTION length (TOK_TABLE_OR_COL name))))))) STAGE DEPENDENCIES: Stage-0 is a root stage STAGE PLANS: Stage: Stage-0 Create View Operator: Create View if not exists: false or replace: false columns: id int, name_length int expanded text: SELECT `id` AS `id`, `_c1` AS `name_length` FROM (select `test`.`id`, length(`test`.`name`) from `default`.`test`) `test_view` name: test_view original text: select id, length(name) from test Time taken: 0.088 seconds
可见,创建View的过程解释后并没有实际执行Map Reduce的Stage,只包含一个Create View Operator的Stage,这个阶段只是对MySQL MetaStore进行元数据操作,记录View的相关元数据而已。
3)接下来,实际创建这个View:
hive> create view test_view (id, name_length) as select id, length(name) from test; OK Time taken: 0.1 seconds
4)执行这个View之前,先explain查看实际被翻译后的执行过程:
hive> explain select name_length from test_view; OK ABSTRACT SYNTAX TREE: (TOK_QUERY (TOK_FROM (TOK_TABREF (TOK_TABNAME test_view))) (TOK_INSERT (TOK_DESTINATION (TOK_DIR TOK_TMP_FILE)) (TOK_SELECT (TOK_SELEXPR (TOK_TABLE_OR_COL name_length))))) STAGE DEPENDENCIES: Stage-1 is a root stage Stage-0 is a root stage STAGE PLANS: Stage: Stage-1 Map Reduce Alias -> Map Operator Tree: test_view:test_view:test TableScan alias: test Select Operator expressions: expr: length(name) type: int outputColumnNames: _col1 Select Operator expressions: expr: _col1 type: int outputColumnNames: _col1 Select Operator expressions: expr: _col1 type: int outputColumnNames: _col0 File Output Operator compressed: false GlobalTableId: 0 table: input format: org.apache.hadoop.mapred.TextInputFormat output format: org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat Stage: Stage-0 Fetch Operator limit: -1 Time taken: 0.107 seconds
可以看出,对View进行的查找过程,实际还是对原始test表进行的查询操作(分为Stage-0和Stage-1两个阶段)。
5)最后,实际对这个View执行一次查询,显示Stage-1阶段对原始表test进行了MapReduce过程:
hive> select name_length from test_view; Total MapReduce jobs = 1 Launching Job 1 out of 1 Number of reduce tasks is set to 0 since there's no reduce operator Starting Job = job_201303092253_0057, Tracking URL = http://jobtracker.host:50030/jobdetails.jsp?jobid=job_201303092253_0057 Kill Command = /usr/lib/hadoop/bin/hadoop job -kill job_201303092253_0057 Hadoop job information for Stage-1: number of mappers: 1; number of reducers: 0 2013-03-13 22:43:39,044 Stage-1 map = 0%, reduce = 0% 2013-03-13 22:43:42,074 Stage-1 map = 100%, reduce = 0%, Cumulative CPU 0.73 sec 2013-03-13 22:43:43,086 Stage-1 map = 100%, reduce = 0%, Cumulative CPU 0.73 sec 2013-03-13 22:43:44,098 Stage-1 map = 100%, reduce = 0%, Cumulative CPU 0.73 sec 2013-03-13 22:43:45,113 Stage-1 map = 100%, reduce = 100%, Cumulative CPU 0.73 sec MapReduce Total cumulative CPU time: 730 msec Ended Job = job_201303092253_0057 MapReduce Jobs Launched: Job 0: Map: 1 Cumulative CPU: 0.73 sec HDFS Read: 250 HDFS Write: 0 SUCCESS Total MapReduce CPU Time Spent: 730 msec OK Time taken: 15.793 seconds