c++之sigslot库

关于

本文演示环境: win10 + VS2017

1. demo

#include <iostream>
#include "sigslot.h"

using namespace sigslot;

class Switch
{
public:
	signal0<>  clicked;
};

class Light : public has_slots<>
{
public:
	void on()
	{
		std::cout << "the light is on\n";
	}
};


int main(int argc, char *argv[])
{
	Light light;
	Switch sw;
	sw.clicked.connect(&light, &Light::on);

	sw.clicked.emit();


	system("pause");

	return 0;
}

2.编译出错

下载原版sigslot.h文件编译出错:

1>c:\users\xxxxxx\desktop\demo_sigslot\sigslot.h(419): warning C4346: “const_iterator”: 依赖名称不是类型
1>c:\users\xxxxxx\desktop\demo_sigslot\sigslot.h(419): note: 用“typename”为前缀来表示类型
1>c:\users\xxxxxx\desktop\demo_sigslot\sigslot.h(476): note: 参见对正在编译的 类 模板 实例化 "sigslot::has_slots<mt_policy>" 的引用
1>c:\users\xxxxxx\desktop\demo_sigslot\sigslot.h(419): error C2061: 语法错误: 标识符“const_iterator”
1>c:\users\xxxxxx\desktop\demo_sigslot\sigslot.h(419): error C2238: 意外的标记位于“;”之前
1>c:\users\xxxxxx\desktop\demo_sigslot\sigslot.h(431): error C2760: 语法错误: 意外的令牌“标识符”,预期的令牌为“;”
1>c:\users\xxxxxx\desktop\demo_sigslot\sigslot.h(462): error C2760: 语法错误: 意外的令牌“标识符”,预期的令牌为“;”
1>c:\users\xxxxxx\desktop\demo_sigslot\sigslot.h(493): error C2760: 语法错误: 意外的令牌“标识符”,预期的令牌为“;”
1>c:\users\xxxxxx\desktop\demo_sigslot\sigslot.h(587): note: 参见对正在编译的 类 模板 实例化 "sigslot::_signal_base0<mt_policy>" 的引用
1>c:\users\xxxxxx\desktop\demo_sigslot\sigslot.h(493): error C7510: “const_iterator”: 类型 从属名称的使用必须以“typename”为前缀
1>c:\users\xxxxxx\desktop\demo_sigslot\sigslot.h(513): error C2760: 语法错误: 意外的令牌“标识符”,预期的令牌为“;”
.......

3.正确编译

替换下面的代码 到 sigslog.h中,编译成功,编译及运行结果:

4. sigslot.h

修改后的sigslot.h说明如下:

// Libjingle specific:
// This file has been modified such that has_slots and signalx do not have to be
// using the same threading requirements. E.g. it is possible to connect a
// has_slots<single_threaded> and signal0<multi_threaded_local> or
// has_slots<multi_threaded_local> and signal0<single_threaded>.
// If has_slots is single threaded the user must ensure that it is not trying
// to connect or disconnect to signalx concurrently or data race may occur.
// If signalx is single threaded the user must ensure that disconnect, connect
// or signal is not happening concurrently or data race may occur.

文件源码:

// sigslot.h: Signal/Slot classes
//
// Written by Sarah Thompson (sarah@telergy.com) 2002.
//
// License: Public domain. You are free to use this code however you like, with the proviso that
//          the author takes on no responsibility or liability for any use.
//
// QUICK DOCUMENTATION
//
//              (see also the full documentation at http://sigslot.sourceforge.net/)
//
//      #define switches
//          SIGSLOT_PURE_ISO            - Define this to force ISO C++ compliance. This also disables
//                                        all of the thread safety support on platforms where it is
//                                        available.
//
//          SIGSLOT_USE_POSIX_THREADS   - Force use of Posix threads when using a C++ compiler other than
//                                        gcc on a platform that supports Posix threads. (When using gcc,
//                                        this is the default - use SIGSLOT_PURE_ISO to disable this if
//                                        necessary)
//
//          SIGSLOT_DEFAULT_MT_POLICY   - Where thread support is enabled, this defaults to multi_threaded_global.
//                                        Otherwise, the default is single_threaded. #define this yourself to
//                                        override the default. In pure ISO mode, anything other than
//                                        single_threaded will cause a compiler error.
//
//      PLATFORM NOTES
//
//          Win32                       - On Win32, the WIN32 symbol must be #defined. Most mainstream
//                                        compilers do this by default, but you may need to define it
//                                        yourself if your build environment is less standard. This causes
//                                        the Win32 thread support to be compiled in and used automatically.
//
//          Unix/Linux/BSD, etc.        - If you're using gcc, it is assumed that you have Posix threads
//                                        available, so they are used automatically. You can override this
//                                        (as under Windows) with the SIGSLOT_PURE_ISO switch. If you're using
//                                        something other than gcc but still want to use Posix threads, you
//                                        need to #define SIGSLOT_USE_POSIX_THREADS.
//
//          ISO C++                     - If none of the supported platforms are detected, or if
//                                        SIGSLOT_PURE_ISO is defined, all multithreading support is turned off,
//                                        along with any code that might cause a pure ISO C++ environment to
//                                        complain. Before you ask, gcc -ansi -pedantic won't compile this
//                                        library, but gcc -ansi is fine. Pedantic mode seems to throw a lot of
//                                        errors that aren't really there. If you feel like investigating this,
//                                        please contact the author.
//
//
//      THREADING MODES
//
//          single_threaded             - Your program is assumed to be single threaded from the point of view
//                                        of signal/slot usage (i.e. all objects using signals and slots are
//                                        created and destroyed from a single thread). Behaviour if objects are
//                                        destroyed concurrently is undefined (i.e. you'll get the occasional
//                                        segmentation fault/memory exception).
//
//          multi_threaded_global       - Your program is assumed to be multi threaded. Objects using signals and
//                                        slots can be safely created and destroyed from any thread, even when
//                                        connections exist. In multi_threaded_global mode, this is achieved by a
//                                        single global mutex (actually a critical section on Windows because they
//                                        are faster). This option uses less OS resources, but results in more
//                                        opportunities for contention, possibly resulting in more context switches
//                                        than are strictly necessary.
//
//          multi_threaded_local        - Behaviour in this mode is essentially the same as multi_threaded_global,
//                                        except that each signal, and each object that inherits has_slots, all
//                                        have their own mutex/critical section. In practice, this means that
//                                        mutex collisions (and hence context switches) only happen if they are
//                                        absolutely essential. However, on some platforms, creating a lot of
//                                        mutexes can slow down the whole OS, so use this option with care.
//
//      USING THE LIBRARY
//
//          See the full documentation at http://sigslot.sourceforge.net/
//
//
// Libjingle specific:
// This file has been modified such that has_slots and signalx do not have to be
// using the same threading requirements. E.g. it is possible to connect a
// has_slots<single_threaded> and signal0<multi_threaded_local> or
// has_slots<multi_threaded_local> and signal0<single_threaded>.
// If has_slots is single threaded the user must ensure that it is not trying
// to connect or disconnect to signalx concurrently or data race may occur.
// If signalx is single threaded the user must ensure that disconnect, connect
// or signal is not happening concurrently or data race may occur.

#ifndef _SIGSLOT_H__
#define _SIGSLOT_H__

#include <list>
#include <set>
#include <stdlib.h>

// On our copy of sigslot.h, we set single threading as default.
#define SIGSLOT_DEFAULT_MT_POLICY single_threaded

#if defined(SIGSLOT_PURE_ISO) || (!defined(WIN32) && !defined(__GNUG__) && !defined(SIGSLOT_USE_POSIX_THREADS))
#   define _SIGSLOT_SINGLE_THREADED
#elif defined(WIN32)
#   define _SIGSLOT_HAS_WIN32_THREADS
#   if !defined(WIN32_LEAN_AND_MEAN)
#       define WIN32_LEAN_AND_MEAN
#   endif
#   include <windows.h>
#elif defined(__GNUG__) || defined(SIGSLOT_USE_POSIX_THREADS)
#   define _SIGSLOT_HAS_POSIX_THREADS
#   include <pthread.h>
#else
#   define _SIGSLOT_SINGLE_THREADED
#endif

#ifndef SIGSLOT_DEFAULT_MT_POLICY
#   ifdef _SIGSLOT_SINGLE_THREADED
#       define SIGSLOT_DEFAULT_MT_POLICY single_threaded
#   else
#       define SIGSLOT_DEFAULT_MT_POLICY multi_threaded_local
#   endif
#endif

// TODO: change this namespace to talk_base?
namespace sigslot {

	class single_threaded
	{
	public:
		single_threaded()
		{
			;
		}

		virtual ~single_threaded()
		{
			;
		}

		virtual void lock()
		{
			;
		}

		virtual void unlock()
		{
			;
		}
	};

#ifdef _SIGSLOT_HAS_WIN32_THREADS
	// The multi threading policies only get compiled in if they are enabled.
	class multi_threaded_global
	{
	public:
		multi_threaded_global()
		{
			static bool isinitialised = false;

			if (!isinitialised)
			{
				InitializeCriticalSection(get_critsec());
				isinitialised = true;
			}
		}

		multi_threaded_global(const multi_threaded_global&)
		{
			;
		}

		virtual ~multi_threaded_global()
		{
			;
		}

		virtual void lock()
		{
			EnterCriticalSection(get_critsec());
		}

		virtual void unlock()
		{
			LeaveCriticalSection(get_critsec());
		}

	private:
		CRITICAL_SECTION* get_critsec()
		{
			static CRITICAL_SECTION g_critsec;
			return &g_critsec;
		}
	};

	class multi_threaded_local
	{
	public:
		multi_threaded_local()
		{
			InitializeCriticalSection(&m_critsec);
		}

		multi_threaded_local(const multi_threaded_local&)
		{
			InitializeCriticalSection(&m_critsec);
		}

		virtual ~multi_threaded_local()
		{
			DeleteCriticalSection(&m_critsec);
		}

		virtual void lock()
		{
			EnterCriticalSection(&m_critsec);
		}

		virtual void unlock()
		{
			LeaveCriticalSection(&m_critsec);
		}

	private:
		CRITICAL_SECTION m_critsec;
	};
#endif // _SIGSLOT_HAS_WIN32_THREADS

#ifdef _SIGSLOT_HAS_POSIX_THREADS
	// The multi threading policies only get compiled in if they are enabled.
	class multi_threaded_global
	{
	public:
		multi_threaded_global()
		{
			pthread_mutex_init(get_mutex(), NULL);
		}

		multi_threaded_global(const multi_threaded_global&)
		{
			;
		}

		virtual ~multi_threaded_global()
		{
			;
		}

		virtual void lock()
		{
			pthread_mutex_lock(get_mutex());
		}

		virtual void unlock()
		{
			pthread_mutex_unlock(get_mutex());
		}

	private:
		pthread_mutex_t* get_mutex()
		{
			static pthread_mutex_t g_mutex;
			return &g_mutex;
		}
	};

	class multi_threaded_local
	{
	public:
		multi_threaded_local()
		{
			pthread_mutex_init(&m_mutex, NULL);
		}

		multi_threaded_local(const multi_threaded_local&)
		{
			pthread_mutex_init(&m_mutex, NULL);
		}

		virtual ~multi_threaded_local()
		{
			pthread_mutex_destroy(&m_mutex);
		}

		virtual void lock()
		{
			pthread_mutex_lock(&m_mutex);
		}

		virtual void unlock()
		{
			pthread_mutex_unlock(&m_mutex);
		}

	private:
		pthread_mutex_t m_mutex;
	};
#endif // _SIGSLOT_HAS_POSIX_THREADS

	template<class mt_policy>
	class lock_block
	{
	public:
		mt_policy *m_mutex;

		lock_block(mt_policy *mtx)
			: m_mutex(mtx)
		{
			m_mutex->lock();
		}

		~lock_block()
		{
			m_mutex->unlock();
		}
	};

	class has_slots_interface;

	template<class mt_policy>
	class _connection_base0
	{
	public:
		virtual ~_connection_base0() {}
		virtual has_slots_interface* getdest() const = 0;
		virtual void emit() = 0;
		virtual _connection_base0* clone() = 0;
		virtual _connection_base0* duplicate(has_slots_interface* pnewdest) = 0;
	};

	template<class arg1_type, class mt_policy>
	class _connection_base1
	{
	public:
		virtual ~_connection_base1() {}
		virtual has_slots_interface* getdest() const = 0;
		virtual void emit(arg1_type) = 0;
		virtual _connection_base1<arg1_type, mt_policy>* clone() = 0;
		virtual _connection_base1<arg1_type, mt_policy>* duplicate(has_slots_interface* pnewdest) = 0;
	};

	template<class arg1_type, class arg2_type, class mt_policy>
	class _connection_base2
	{
	public:
		virtual ~_connection_base2() {}
		virtual has_slots_interface* getdest() const = 0;
		virtual void emit(arg1_type, arg2_type) = 0;
		virtual _connection_base2<arg1_type, arg2_type, mt_policy>* clone() = 0;
		virtual _connection_base2<arg1_type, arg2_type, mt_policy>* duplicate(has_slots_interface* pnewdest) = 0;
	};

	template<class arg1_type, class arg2_type, class arg3_type, class mt_policy>
	class _connection_base3
	{
	public:
		virtual ~_connection_base3() {}
		virtual has_slots_interface* getdest() const = 0;
		virtual void emit(arg1_type, arg2_type, arg3_type) = 0;
		virtual _connection_base3<arg1_type, arg2_type, arg3_type, mt_policy>* clone() = 0;
		virtual _connection_base3<arg1_type, arg2_type, arg3_type, mt_policy>* duplicate(has_slots_interface* pnewdest) = 0;
	};

	template<class arg1_type, class arg2_type, class arg3_type, class arg4_type, class mt_policy>
	class _connection_base4
	{
	public:
		virtual ~_connection_base4() {}
		virtual has_slots_interface* getdest() const = 0;
		virtual void emit(arg1_type, arg2_type, arg3_type, arg4_type) = 0;
		virtual _connection_base4<arg1_type, arg2_type, arg3_type, arg4_type, mt_policy>* clone() = 0;
		virtual _connection_base4<arg1_type, arg2_type, arg3_type, arg4_type, mt_policy>* duplicate(has_slots_interface* pnewdest) = 0;
	};

	template<class arg1_type, class arg2_type, class arg3_type, class arg4_type,
		class arg5_type, class mt_policy>
		class _connection_base5
	{
	public:
		virtual ~_connection_base5() {}
		virtual has_slots_interface* getdest() const = 0;
		virtual void emit(arg1_type, arg2_type, arg3_type, arg4_type,
			arg5_type) = 0;
		virtual _connection_base5<arg1_type, arg2_type, arg3_type, arg4_type,
			arg5_type, mt_policy>* clone() = 0;
		virtual _connection_base5<arg1_type, arg2_type, arg3_type, arg4_type,
			arg5_type, mt_policy>* duplicate(has_slots_interface* pnewdest) = 0;
	};

	template<class arg1_type, class arg2_type, class arg3_type, class arg4_type,
		class arg5_type, class arg6_type, class mt_policy>
		class _connection_base6
	{
	public:
		virtual ~_connection_base6() {}
		virtual has_slots_interface* getdest() const = 0;
		virtual void emit(arg1_type, arg2_type, arg3_type, arg4_type, arg5_type,
			arg6_type) = 0;
		virtual _connection_base6<arg1_type, arg2_type, arg3_type, arg4_type,
			arg5_type, arg6_type, mt_policy>* clone() = 0;
		virtual _connection_base6<arg1_type, arg2_type, arg3_type, arg4_type,
			arg5_type, arg6_type, mt_policy>* duplicate(has_slots_interface* pnewdest) = 0;
	};

	template<class arg1_type, class arg2_type, class arg3_type, class arg4_type,
		class arg5_type, class arg6_type, class arg7_type, class mt_policy>
		class _connection_base7
	{
	public:
		virtual ~_connection_base7() {}
		virtual has_slots_interface* getdest() const = 0;
		virtual void emit(arg1_type, arg2_type, arg3_type, arg4_type, arg5_type,
			arg6_type, arg7_type) = 0;
		virtual _connection_base7<arg1_type, arg2_type, arg3_type, arg4_type,
			arg5_type, arg6_type, arg7_type, mt_policy>* clone() = 0;
		virtual _connection_base7<arg1_type, arg2_type, arg3_type, arg4_type,
			arg5_type, arg6_type, arg7_type, mt_policy>* duplicate(has_slots_interface* pnewdest) = 0;
	};

	template<class arg1_type, class arg2_type, class arg3_type, class arg4_type,
		class arg5_type, class arg6_type, class arg7_type, class arg8_type, class mt_policy>
		class _connection_base8
	{
	public:
		virtual ~_connection_base8() {}
		virtual has_slots_interface* getdest() const = 0;
		virtual void emit(arg1_type, arg2_type, arg3_type, arg4_type, arg5_type,
			arg6_type, arg7_type, arg8_type) = 0;
		virtual _connection_base8<arg1_type, arg2_type, arg3_type, arg4_type,
			arg5_type, arg6_type, arg7_type, arg8_type, mt_policy>* clone() = 0;
		virtual _connection_base8<arg1_type, arg2_type, arg3_type, arg4_type,
			arg5_type, arg6_type, arg7_type, arg8_type, mt_policy>* duplicate(has_slots_interface* pnewdest) = 0;
	};

	class _signal_base_interface
	{
	public:
		virtual void slot_disconnect(has_slots_interface* pslot) = 0;
		virtual void slot_duplicate(const has_slots_interface* poldslot, has_slots_interface* pnewslot) = 0;
	};

	template<class mt_policy>
	class _signal_base : public _signal_base_interface, public mt_policy
	{
	};

	class has_slots_interface
	{
	public:
		has_slots_interface()
		{
			;
		}

		virtual void signal_connect(_signal_base_interface* sender) = 0;

		virtual void signal_disconnect(_signal_base_interface* sender) = 0;

		virtual ~has_slots_interface()
		{
		}

		virtual void disconnect_all() = 0;
	};

	template<class mt_policy = SIGSLOT_DEFAULT_MT_POLICY>
	class has_slots : public has_slots_interface, public mt_policy
	{
	private:
		typedef std::set<_signal_base_interface*> sender_set;
		typedef sender_set::const_iterator const_iterator;

	public:
		has_slots()
		{
			;
		}

		has_slots(const has_slots& hs)
		{
			lock_block<mt_policy> lock(this);
			const_iterator it = hs.m_senders.begin();
			const_iterator itEnd = hs.m_senders.end();

			while (it != itEnd)
			{
				(*it)->slot_duplicate(&hs, this);
				m_senders.insert(*it);
				++it;
			}
		}

		void signal_connect(_signal_base_interface* sender)
		{
			lock_block<mt_policy> lock(this);
			m_senders.insert(sender);
		}

		void signal_disconnect(_signal_base_interface* sender)
		{
			lock_block<mt_policy> lock(this);
			m_senders.erase(sender);
		}

		virtual ~has_slots()
		{
			disconnect_all();
		}

		void disconnect_all()
		{
			lock_block<mt_policy> lock(this);
			const_iterator it = m_senders.begin();
			const_iterator itEnd = m_senders.end();

			while (it != itEnd)
			{
				(*it)->slot_disconnect(this);
				++it;
			}

			m_senders.erase(m_senders.begin(), m_senders.end());
		}

	private:
		sender_set m_senders;
	};

	template<class mt_policy>
	class _signal_base0 : public _signal_base<mt_policy>
	{
	public:
		typedef std::list<_connection_base0<mt_policy> *>  connections_list;

		_signal_base0()
		{
			;
		}

		_signal_base0(const _signal_base0& s)
			: _signal_base<mt_policy>(s)
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::const_iterator it = s.m_connected_slots.begin();
			typename connections_list::const_iterator itEnd = s.m_connected_slots.end();

			while (it != itEnd)
			{
				(*it)->getdest()->signal_connect(this);
				m_connected_slots.push_back((*it)->clone());

				++it;
			}
		}

		~_signal_base0()
		{
			disconnect_all();
		}

		bool is_empty()
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::const_iterator it = m_connected_slots.begin();
			typename connections_list::const_iterator itEnd = m_connected_slots.end();
			return it == itEnd;
		}

		void disconnect_all()
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::const_iterator it = m_connected_slots.begin();
			typename connections_list::const_iterator itEnd = m_connected_slots.end();

			while (it != itEnd)
			{
				(*it)->getdest()->signal_disconnect(this);
				delete *it;

				++it;
			}

			m_connected_slots.erase(m_connected_slots.begin(), m_connected_slots.end());
		}

#ifdef _DEBUG
		bool connected(has_slots_interface* pclass)
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::const_iterator itNext, it = m_connected_slots.begin();
			typename connections_list::const_iterator itEnd = m_connected_slots.end();
			while (it != itEnd)
			{
				itNext = it;
				++itNext;
				if ((*it)->getdest() == pclass)
					return true;
				it = itNext;
			}
			return false;
		}
#endif

		void disconnect(has_slots_interface* pclass)
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::iterator it = m_connected_slots.begin();
			typename connections_list::iterator itEnd = m_connected_slots.end();

			while (it != itEnd)
			{
				if ((*it)->getdest() == pclass)
				{
					delete *it;
					m_connected_slots.erase(it);
					pclass->signal_disconnect(this);
					return;
				}

				++it;
			}
		}

		void slot_disconnect(has_slots_interface* pslot)
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::iterator it = m_connected_slots.begin();
			typename connections_list::iterator itEnd = m_connected_slots.end();

			while (it != itEnd)
			{
				typename connections_list::iterator itNext = it;
				++itNext;

				if ((*it)->getdest() == pslot)
				{
					delete *it;
					m_connected_slots.erase(it);
				}

				it = itNext;
			}
		}

		void slot_duplicate(const has_slots_interface* oldtarget, has_slots_interface* newtarget)
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::iterator it = m_connected_slots.begin();
			typename connections_list::iterator itEnd = m_connected_slots.end();

			while (it != itEnd)
			{
				if ((*it)->getdest() == oldtarget)
				{
					m_connected_slots.push_back((*it)->duplicate(newtarget));
				}

				++it;
			}
		}

	protected:
		connections_list m_connected_slots;
	};

	template<class arg1_type, class mt_policy>
	class _signal_base1 : public _signal_base<mt_policy>
	{
	public:
		typedef std::list<_connection_base1<arg1_type, mt_policy> *>  connections_list;

		_signal_base1()
		{
			;
		}

		_signal_base1(const _signal_base1<arg1_type, mt_policy>& s)
			: _signal_base<mt_policy>(s)
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::const_iterator it = s.m_connected_slots.begin();
			typename connections_list::const_iterator itEnd = s.m_connected_slots.end();

			while (it != itEnd)
			{
				(*it)->getdest()->signal_connect(this);
				m_connected_slots.push_back((*it)->clone());

				++it;
			}
		}

		void slot_duplicate(const has_slots_interface* oldtarget, has_slots_interface* newtarget)
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::iterator it = m_connected_slots.begin();
			typename connections_list::iterator itEnd = m_connected_slots.end();

			while (it != itEnd)
			{
				if ((*it)->getdest() == oldtarget)
				{
					m_connected_slots.push_back((*it)->duplicate(newtarget));
				}

				++it;
			}
		}

		~_signal_base1()
		{
			disconnect_all();
		}

		bool is_empty()
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::const_iterator it = m_connected_slots.begin();
			typename connections_list::const_iterator itEnd = m_connected_slots.end();
			return it == itEnd;
		}

		void disconnect_all()
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::const_iterator it = m_connected_slots.begin();
			typename connections_list::const_iterator itEnd = m_connected_slots.end();

			while (it != itEnd)
			{
				(*it)->getdest()->signal_disconnect(this);
				delete *it;

				++it;
			}

			m_connected_slots.erase(m_connected_slots.begin(), m_connected_slots.end());
		}

#ifdef _DEBUG
		bool connected(has_slots_interface* pclass)
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::const_iterator itNext, it = m_connected_slots.begin();
			typename connections_list::const_iterator itEnd = m_connected_slots.end();
			while (it != itEnd)
			{
				itNext = it;
				++itNext;
				if ((*it)->getdest() == pclass)
					return true;
				it = itNext;
			}
			return false;
		}
#endif

		void disconnect(has_slots_interface* pclass)
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::iterator it = m_connected_slots.begin();
			typename connections_list::iterator itEnd = m_connected_slots.end();

			while (it != itEnd)
			{
				if ((*it)->getdest() == pclass)
				{
					delete *it;
					m_connected_slots.erase(it);
					pclass->signal_disconnect(this);
					return;
				}

				++it;
			}
		}

		void slot_disconnect(has_slots_interface* pslot)
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::iterator it = m_connected_slots.begin();
			typename connections_list::iterator itEnd = m_connected_slots.end();

			while (it != itEnd)
			{
				typename connections_list::iterator itNext = it;
				++itNext;

				if ((*it)->getdest() == pslot)
				{
					delete *it;
					m_connected_slots.erase(it);
				}

				it = itNext;
			}
		}


	protected:
		connections_list m_connected_slots;
	};

	template<class arg1_type, class arg2_type, class mt_policy>
	class _signal_base2 : public _signal_base<mt_policy>
	{
	public:
		typedef std::list<_connection_base2<arg1_type, arg2_type, mt_policy> *>
			connections_list;

		_signal_base2()
		{
			;
		}

		_signal_base2(const _signal_base2<arg1_type, arg2_type, mt_policy>& s)
			: _signal_base<mt_policy>(s)
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::const_iterator it = s.m_connected_slots.begin();
			typename connections_list::const_iterator itEnd = s.m_connected_slots.end();

			while (it != itEnd)
			{
				(*it)->getdest()->signal_connect(this);
				m_connected_slots.push_back((*it)->clone());

				++it;
			}
		}

		void slot_duplicate(const has_slots_interface* oldtarget, has_slots_interface* newtarget)
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::iterator it = m_connected_slots.begin();
			typename connections_list::iterator itEnd = m_connected_slots.end();

			while (it != itEnd)
			{
				if ((*it)->getdest() == oldtarget)
				{
					m_connected_slots.push_back((*it)->duplicate(newtarget));
				}

				++it;
			}
		}

		~_signal_base2()
		{
			disconnect_all();
		}

		bool is_empty()
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::const_iterator it = m_connected_slots.begin();
			typename connections_list::const_iterator itEnd = m_connected_slots.end();
			return it == itEnd;
		}

		void disconnect_all()
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::const_iterator it = m_connected_slots.begin();
			typename connections_list::const_iterator itEnd = m_connected_slots.end();

			while (it != itEnd)
			{
				(*it)->getdest()->signal_disconnect(this);
				delete *it;

				++it;
			}

			m_connected_slots.erase(m_connected_slots.begin(), m_connected_slots.end());
		}

#ifdef _DEBUG
		bool connected(has_slots_interface* pclass)
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::const_iterator itNext, it = m_connected_slots.begin();
			typename connections_list::const_iterator itEnd = m_connected_slots.end();
			while (it != itEnd)
			{
				itNext = it;
				++itNext;
				if ((*it)->getdest() == pclass)
					return true;
				it = itNext;
			}
			return false;
		}
#endif

		void disconnect(has_slots_interface* pclass)
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::iterator it = m_connected_slots.begin();
			typename connections_list::iterator itEnd = m_connected_slots.end();

			while (it != itEnd)
			{
				if ((*it)->getdest() == pclass)
				{
					delete *it;
					m_connected_slots.erase(it);
					pclass->signal_disconnect(this);
					return;
				}

				++it;
			}
		}

		void slot_disconnect(has_slots_interface* pslot)
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::iterator it = m_connected_slots.begin();
			typename connections_list::iterator itEnd = m_connected_slots.end();

			while (it != itEnd)
			{
				typename connections_list::iterator itNext = it;
				++itNext;

				if ((*it)->getdest() == pslot)
				{
					delete *it;
					m_connected_slots.erase(it);
				}

				it = itNext;
			}
		}

	protected:
		connections_list m_connected_slots;
	};

	template<class arg1_type, class arg2_type, class arg3_type, class mt_policy>
	class _signal_base3 : public _signal_base<mt_policy>
	{
	public:
		typedef std::list<_connection_base3<arg1_type, arg2_type, arg3_type, mt_policy> *>
			connections_list;

		_signal_base3()
		{
			;
		}

		_signal_base3(const _signal_base3<arg1_type, arg2_type, arg3_type, mt_policy>& s)
			: _signal_base<mt_policy>(s)
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::const_iterator it = s.m_connected_slots.begin();
			typename connections_list::const_iterator itEnd = s.m_connected_slots.end();

			while (it != itEnd)
			{
				(*it)->getdest()->signal_connect(this);
				m_connected_slots.push_back((*it)->clone());

				++it;
			}
		}

		void slot_duplicate(const has_slots_interface* oldtarget, has_slots_interface* newtarget)
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::iterator it = m_connected_slots.begin();
			typename connections_list::iterator itEnd = m_connected_slots.end();

			while (it != itEnd)
			{
				if ((*it)->getdest() == oldtarget)
				{
					m_connected_slots.push_back((*it)->duplicate(newtarget));
				}

				++it;
			}
		}

		~_signal_base3()
		{
			disconnect_all();
		}

		bool is_empty()
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::const_iterator it = m_connected_slots.begin();
			typename connections_list::const_iterator itEnd = m_connected_slots.end();
			return it == itEnd;
		}

		void disconnect_all()
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::const_iterator it = m_connected_slots.begin();
			typename connections_list::const_iterator itEnd = m_connected_slots.end();

			while (it != itEnd)
			{
				(*it)->getdest()->signal_disconnect(this);
				delete *it;

				++it;
			}

			m_connected_slots.erase(m_connected_slots.begin(), m_connected_slots.end());
		}

#ifdef _DEBUG
		bool connected(has_slots_interface* pclass)
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::const_iterator itNext, it = m_connected_slots.begin();
			typename connections_list::const_iterator itEnd = m_connected_slots.end();
			while (it != itEnd)
			{
				itNext = it;
				++itNext;
				if ((*it)->getdest() == pclass)
					return true;
				it = itNext;
			}
			return false;
		}
#endif

		void disconnect(has_slots_interface* pclass)
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::iterator it = m_connected_slots.begin();
			typename connections_list::iterator itEnd = m_connected_slots.end();

			while (it != itEnd)
			{
				if ((*it)->getdest() == pclass)
				{
					delete *it;
					m_connected_slots.erase(it);
					pclass->signal_disconnect(this);
					return;
				}

				++it;
			}
		}

		void slot_disconnect(has_slots_interface* pslot)
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::iterator it = m_connected_slots.begin();
			typename connections_list::iterator itEnd = m_connected_slots.end();

			while (it != itEnd)
			{
				typename connections_list::iterator itNext = it;
				++itNext;

				if ((*it)->getdest() == pslot)
				{
					delete *it;
					m_connected_slots.erase(it);
				}

				it = itNext;
			}
		}

	protected:
		connections_list m_connected_slots;
	};

	template<class arg1_type, class arg2_type, class arg3_type, class arg4_type, class mt_policy>
	class _signal_base4 : public _signal_base<mt_policy>
	{
	public:
		typedef std::list<_connection_base4<arg1_type, arg2_type, arg3_type,
			arg4_type, mt_policy> *>  connections_list;

		_signal_base4()
		{
			;
		}

		_signal_base4(const _signal_base4<arg1_type, arg2_type, arg3_type, arg4_type, mt_policy>& s)
			: _signal_base<mt_policy>(s)
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::const_iterator it = s.m_connected_slots.begin();
			typename connections_list::const_iterator itEnd = s.m_connected_slots.end();

			while (it != itEnd)
			{
				(*it)->getdest()->signal_connect(this);
				m_connected_slots.push_back((*it)->clone());

				++it;
			}
		}

		void slot_duplicate(const has_slots_interface* oldtarget, has_slots_interface* newtarget)
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::iterator it = m_connected_slots.begin();
			typename connections_list::iterator itEnd = m_connected_slots.end();

			while (it != itEnd)
			{
				if ((*it)->getdest() == oldtarget)
				{
					m_connected_slots.push_back((*it)->duplicate(newtarget));
				}

				++it;
			}
		}

		~_signal_base4()
		{
			disconnect_all();
		}

		bool is_empty()
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::const_iterator it = m_connected_slots.begin();
			typename connections_list::const_iterator itEnd = m_connected_slots.end();
			return it == itEnd;
		}

		void disconnect_all()
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::const_iterator it = m_connected_slots.begin();
			typename connections_list::const_iterator itEnd = m_connected_slots.end();

			while (it != itEnd)
			{
				(*it)->getdest()->signal_disconnect(this);
				delete *it;

				++it;
			}

			m_connected_slots.erase(m_connected_slots.begin(), m_connected_slots.end());
		}

#ifdef _DEBUG
		bool connected(has_slots_interface* pclass)
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::const_iterator itNext, it = m_connected_slots.begin();
			typename connections_list::const_iterator itEnd = m_connected_slots.end();
			while (it != itEnd)
			{
				itNext = it;
				++itNext;
				if ((*it)->getdest() == pclass)
					return true;
				it = itNext;
			}
			return false;
		}
#endif

		void disconnect(has_slots_interface* pclass)
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::iterator it = m_connected_slots.begin();
			typename connections_list::iterator itEnd = m_connected_slots.end();

			while (it != itEnd)
			{
				if ((*it)->getdest() == pclass)
				{
					delete *it;
					m_connected_slots.erase(it);
					pclass->signal_disconnect(this);
					return;
				}

				++it;
			}
		}

		void slot_disconnect(has_slots_interface* pslot)
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::iterator it = m_connected_slots.begin();
			typename connections_list::iterator itEnd = m_connected_slots.end();

			while (it != itEnd)
			{
				typename connections_list::iterator itNext = it;
				++itNext;

				if ((*it)->getdest() == pslot)
				{
					delete *it;
					m_connected_slots.erase(it);
				}

				it = itNext;
			}
		}

	protected:
		connections_list m_connected_slots;
	};

	template<class arg1_type, class arg2_type, class arg3_type, class arg4_type,
		class arg5_type, class mt_policy>
		class _signal_base5 : public _signal_base<mt_policy>
	{
	public:
		typedef std::list<_connection_base5<arg1_type, arg2_type, arg3_type,
			arg4_type, arg5_type, mt_policy> *>  connections_list;

		_signal_base5()
		{
			;
		}

		_signal_base5(const _signal_base5<arg1_type, arg2_type, arg3_type, arg4_type,
			arg5_type, mt_policy>& s)
			: _signal_base<mt_policy>(s)
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::const_iterator it = s.m_connected_slots.begin();
			typename connections_list::const_iterator itEnd = s.m_connected_slots.end();

			while (it != itEnd)
			{
				(*it)->getdest()->signal_connect(this);
				m_connected_slots.push_back((*it)->clone());

				++it;
			}
		}

		void slot_duplicate(const has_slots_interface* oldtarget, has_slots_interface* newtarget)
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::iterator it = m_connected_slots.begin();
			typename connections_list::iterator itEnd = m_connected_slots.end();

			while (it != itEnd)
			{
				if ((*it)->getdest() == oldtarget)
				{
					m_connected_slots.push_back((*it)->duplicate(newtarget));
				}

				++it;
			}
		}

		~_signal_base5()
		{
			disconnect_all();
		}

		bool is_empty()
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::const_iterator it = m_connected_slots.begin();
			typename connections_list::const_iterator itEnd = m_connected_slots.end();
			return it == itEnd;
		}

		void disconnect_all()
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::const_iterator it = m_connected_slots.begin();
			typename connections_list::const_iterator itEnd = m_connected_slots.end();

			while (it != itEnd)
			{
				(*it)->getdest()->signal_disconnect(this);
				delete *it;

				++it;
			}

			m_connected_slots.erase(m_connected_slots.begin(), m_connected_slots.end());
		}

#ifdef _DEBUG
		bool connected(has_slots_interface* pclass)
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::const_iterator itNext, it = m_connected_slots.begin();
			typename connections_list::const_iterator itEnd = m_connected_slots.end();
			while (it != itEnd)
			{
				itNext = it;
				++itNext;
				if ((*it)->getdest() == pclass)
					return true;
				it = itNext;
			}
			return false;
		}
#endif

		void disconnect(has_slots_interface* pclass)
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::iterator it = m_connected_slots.begin();
			typename connections_list::iterator itEnd = m_connected_slots.end();

			while (it != itEnd)
			{
				if ((*it)->getdest() == pclass)
				{
					delete *it;
					m_connected_slots.erase(it);
					pclass->signal_disconnect(this);
					return;
				}

				++it;
			}
		}

		void slot_disconnect(has_slots_interface* pslot)
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::iterator it = m_connected_slots.begin();
			typename connections_list::iterator itEnd = m_connected_slots.end();

			while (it != itEnd)
			{
				typename connections_list::iterator itNext = it;
				++itNext;

				if ((*it)->getdest() == pslot)
				{
					delete *it;
					m_connected_slots.erase(it);
				}

				it = itNext;
			}
		}

	protected:
		connections_list m_connected_slots;
	};

	template<class arg1_type, class arg2_type, class arg3_type, class arg4_type,
		class arg5_type, class arg6_type, class mt_policy>
		class _signal_base6 : public _signal_base<mt_policy>
	{
	public:
		typedef std::list<_connection_base6<arg1_type, arg2_type, arg3_type,
			arg4_type, arg5_type, arg6_type, mt_policy> *>  connections_list;

		_signal_base6()
		{
			;
		}

		_signal_base6(const _signal_base6<arg1_type, arg2_type, arg3_type, arg4_type,
			arg5_type, arg6_type, mt_policy>& s)
			: _signal_base<mt_policy>(s)
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::const_iterator it = s.m_connected_slots.begin();
			typename connections_list::const_iterator itEnd = s.m_connected_slots.end();

			while (it != itEnd)
			{
				(*it)->getdest()->signal_connect(this);
				m_connected_slots.push_back((*it)->clone());

				++it;
			}
		}

		void slot_duplicate(const has_slots_interface* oldtarget, has_slots_interface* newtarget)
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::iterator it = m_connected_slots.begin();
			typename connections_list::iterator itEnd = m_connected_slots.end();

			while (it != itEnd)
			{
				if ((*it)->getdest() == oldtarget)
				{
					m_connected_slots.push_back((*it)->duplicate(newtarget));
				}

				++it;
			}
		}

		~_signal_base6()
		{
			disconnect_all();
		}

		bool is_empty()
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::const_iterator it = m_connected_slots.begin();
			typename connections_list::const_iterator itEnd = m_connected_slots.end();
			return it == itEnd;
		}

		void disconnect_all()
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::const_iterator it = m_connected_slots.begin();
			typename connections_list::const_iterator itEnd = m_connected_slots.end();

			while (it != itEnd)
			{
				(*it)->getdest()->signal_disconnect(this);
				delete *it;

				++it;
			}

			m_connected_slots.erase(m_connected_slots.begin(), m_connected_slots.end());
		}

#ifdef _DEBUG
		bool connected(has_slots_interface* pclass)
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::const_iterator itNext, it = m_connected_slots.begin();
			typename connections_list::const_iterator itEnd = m_connected_slots.end();
			while (it != itEnd)
			{
				itNext = it;
				++itNext;
				if ((*it)->getdest() == pclass)
					return true;
				it = itNext;
			}
			return false;
		}
#endif

		void disconnect(has_slots_interface* pclass)
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::iterator it = m_connected_slots.begin();
			typename connections_list::iterator itEnd = m_connected_slots.end();

			while (it != itEnd)
			{
				if ((*it)->getdest() == pclass)
				{
					delete *it;
					m_connected_slots.erase(it);
					pclass->signal_disconnect(this);
					return;
				}

				++it;
			}
		}

		void slot_disconnect(has_slots_interface* pslot)
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::iterator it = m_connected_slots.begin();
			typename connections_list::iterator itEnd = m_connected_slots.end();

			while (it != itEnd)
			{
				typename connections_list::iterator itNext = it;
				++itNext;

				if ((*it)->getdest() == pslot)
				{
					delete *it;
					m_connected_slots.erase(it);
				}

				it = itNext;
			}
		}

	protected:
		connections_list m_connected_slots;
	};

	template<class arg1_type, class arg2_type, class arg3_type, class arg4_type,
		class arg5_type, class arg6_type, class arg7_type, class mt_policy>
		class _signal_base7 : public _signal_base<mt_policy>
	{
	public:
		typedef std::list<_connection_base7<arg1_type, arg2_type, arg3_type,
			arg4_type, arg5_type, arg6_type, arg7_type, mt_policy> *>  connections_list;

		_signal_base7()
		{
			;
		}

		_signal_base7(const _signal_base7<arg1_type, arg2_type, arg3_type, arg4_type,
			arg5_type, arg6_type, arg7_type, mt_policy>& s)
			: _signal_base<mt_policy>(s)
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::const_iterator it = s.m_connected_slots.begin();
			typename connections_list::const_iterator itEnd = s.m_connected_slots.end();

			while (it != itEnd)
			{
				(*it)->getdest()->signal_connect(this);
				m_connected_slots.push_back((*it)->clone());

				++it;
			}
		}

		void slot_duplicate(const has_slots_interface* oldtarget, has_slots_interface* newtarget)
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::iterator it = m_connected_slots.begin();
			typename connections_list::iterator itEnd = m_connected_slots.end();

			while (it != itEnd)
			{
				if ((*it)->getdest() == oldtarget)
				{
					m_connected_slots.push_back((*it)->duplicate(newtarget));
				}

				++it;
			}
		}

		~_signal_base7()
		{
			disconnect_all();
		}

		bool is_empty()
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::const_iterator it = m_connected_slots.begin();
			typename connections_list::const_iterator itEnd = m_connected_slots.end();
			return it == itEnd;
		}

		void disconnect_all()
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::const_iterator it = m_connected_slots.begin();
			typename connections_list::const_iterator itEnd = m_connected_slots.end();

			while (it != itEnd)
			{
				(*it)->getdest()->signal_disconnect(this);
				delete *it;

				++it;
			}

			m_connected_slots.erase(m_connected_slots.begin(), m_connected_slots.end());
		}

#ifdef _DEBUG
		bool connected(has_slots_interface* pclass)
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::const_iterator itNext, it = m_connected_slots.begin();
			typename connections_list::const_iterator itEnd = m_connected_slots.end();
			while (it != itEnd)
			{
				itNext = it;
				++itNext;
				if ((*it)->getdest() == pclass)
					return true;
				it = itNext;
			}
			return false;
		}
#endif

		void disconnect(has_slots_interface* pclass)
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::iterator it = m_connected_slots.begin();
			typename connections_list::iterator itEnd = m_connected_slots.end();

			while (it != itEnd)
			{
				if ((*it)->getdest() == pclass)
				{
					delete *it;
					m_connected_slots.erase(it);
					pclass->signal_disconnect(this);
					return;
				}

				++it;
			}
		}

		void slot_disconnect(has_slots_interface* pslot)
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::iterator it = m_connected_slots.begin();
			typename connections_list::iterator itEnd = m_connected_slots.end();

			while (it != itEnd)
			{
				typename connections_list::iterator itNext = it;
				++itNext;

				if ((*it)->getdest() == pslot)
				{
					delete *it;
					m_connected_slots.erase(it);
				}

				it = itNext;
			}
		}

	protected:
		connections_list m_connected_slots;
	};

	template<class arg1_type, class arg2_type, class arg3_type, class arg4_type,
		class arg5_type, class arg6_type, class arg7_type, class arg8_type, class mt_policy>
		class _signal_base8 : public _signal_base<mt_policy>
	{
	public:
		typedef std::list<_connection_base8<arg1_type, arg2_type, arg3_type,
			arg4_type, arg5_type, arg6_type, arg7_type, arg8_type, mt_policy> *>
			connections_list;

		_signal_base8()
		{
			;
		}

		_signal_base8(const _signal_base8<arg1_type, arg2_type, arg3_type, arg4_type,
			arg5_type, arg6_type, arg7_type, arg8_type, mt_policy>& s)
			: _signal_base<mt_policy>(s)
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::const_iterator it = s.m_connected_slots.begin();
			typename connections_list::const_iterator itEnd = s.m_connected_slots.end();

			while (it != itEnd)
			{
				(*it)->getdest()->signal_connect(this);
				m_connected_slots.push_back((*it)->clone());

				++it;
			}
		}

		void slot_duplicate(const has_slots_interface* oldtarget, has_slots_interface* newtarget)
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::iterator it = m_connected_slots.begin();
			typename connections_list::iterator itEnd = m_connected_slots.end();

			while (it != itEnd)
			{
				if ((*it)->getdest() == oldtarget)
				{
					m_connected_slots.push_back((*it)->duplicate(newtarget));
				}

				++it;
			}
		}

		~_signal_base8()
		{
			disconnect_all();
		}

		bool is_empty()
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::const_iterator it = m_connected_slots.begin();
			typename connections_list::const_iterator itEnd = m_connected_slots.end();
			return it == itEnd;
		}

		void disconnect_all()
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::const_iterator it = m_connected_slots.begin();
			typename connections_list::const_iterator itEnd = m_connected_slots.end();

			while (it != itEnd)
			{
				(*it)->getdest()->signal_disconnect(this);
				delete *it;

				++it;
			}

			m_connected_slots.erase(m_connected_slots.begin(), m_connected_slots.end());
		}

#ifdef _DEBUG
		bool connected(has_slots_interface* pclass)
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::const_iterator itNext, it = m_connected_slots.begin();
			typename connections_list::const_iterator itEnd = m_connected_slots.end();
			while (it != itEnd)
			{
				itNext = it;
				++itNext;
				if ((*it)->getdest() == pclass)
					return true;
				it = itNext;
			}
			return false;
		}
#endif

		void disconnect(has_slots_interface* pclass)
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::iterator it = m_connected_slots.begin();
			typename connections_list::iterator itEnd = m_connected_slots.end();

			while (it != itEnd)
			{
				if ((*it)->getdest() == pclass)
				{
					delete *it;
					m_connected_slots.erase(it);
					pclass->signal_disconnect(this);
					return;
				}

				++it;
			}
		}

		void slot_disconnect(has_slots_interface* pslot)
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::iterator it = m_connected_slots.begin();
			typename connections_list::iterator itEnd = m_connected_slots.end();

			while (it != itEnd)
			{
				typename connections_list::iterator itNext = it;
				++itNext;

				if ((*it)->getdest() == pslot)
				{
					delete *it;
					m_connected_slots.erase(it);
				}

				it = itNext;
			}
		}

	protected:
		connections_list m_connected_slots;
	};


	template<class dest_type, class mt_policy>
	class _connection0 : public _connection_base0<mt_policy>
	{
	public:
		_connection0()
		{
			m_pobject = NULL;
			m_pmemfun = NULL;
		}

		_connection0(dest_type* pobject, void (dest_type::*pmemfun)())
		{
			m_pobject = pobject;
			m_pmemfun = pmemfun;
		}

		virtual ~_connection0()
		{
		}

		virtual _connection_base0<mt_policy>* clone()
		{
			return new _connection0<dest_type, mt_policy>(*this);
		}

		virtual _connection_base0<mt_policy>* duplicate(has_slots_interface* pnewdest)
		{
			return new _connection0<dest_type, mt_policy>((dest_type *)pnewdest, m_pmemfun);
		}

		virtual void emit()
		{
			(m_pobject->*m_pmemfun)();
		}

		virtual has_slots_interface* getdest() const
		{
			return m_pobject;
		}

	private:
		dest_type* m_pobject;
		void (dest_type::* m_pmemfun)();
	};

	template<class dest_type, class arg1_type, class mt_policy>
	class _connection1 : public _connection_base1<arg1_type, mt_policy>
	{
	public:
		_connection1()
		{
			m_pobject = NULL;
			m_pmemfun = NULL;
		}

		_connection1(dest_type* pobject, void (dest_type::*pmemfun)(arg1_type))
		{
			m_pobject = pobject;
			m_pmemfun = pmemfun;
		}

		virtual ~_connection1()
		{
		}

		virtual _connection_base1<arg1_type, mt_policy>* clone()
		{
			return new _connection1<dest_type, arg1_type, mt_policy>(*this);
		}

		virtual _connection_base1<arg1_type, mt_policy>* duplicate(has_slots_interface* pnewdest)
		{
			return new _connection1<dest_type, arg1_type, mt_policy>((dest_type *)pnewdest, m_pmemfun);
		}

		virtual void emit(arg1_type a1)
		{
			(m_pobject->*m_pmemfun)(a1);
		}

		virtual has_slots_interface* getdest() const
		{
			return m_pobject;
		}

	private:
		dest_type* m_pobject;
		void (dest_type::* m_pmemfun)(arg1_type);
	};

	template<class dest_type, class arg1_type, class arg2_type, class mt_policy>
	class _connection2 : public _connection_base2<arg1_type, arg2_type, mt_policy>
	{
	public:
		_connection2()
		{
			m_pobject = NULL;
			m_pmemfun = NULL;
		}

		_connection2(dest_type* pobject, void (dest_type::*pmemfun)(arg1_type,
			arg2_type))
		{
			m_pobject = pobject;
			m_pmemfun = pmemfun;
		}

		virtual ~_connection2()
		{
		}

		virtual _connection_base2<arg1_type, arg2_type, mt_policy>* clone()
		{
			return new _connection2<dest_type, arg1_type, arg2_type, mt_policy>(*this);
		}

		virtual _connection_base2<arg1_type, arg2_type, mt_policy>* duplicate(has_slots_interface* pnewdest)
		{
			return new _connection2<dest_type, arg1_type, arg2_type, mt_policy>((dest_type *)pnewdest, m_pmemfun);
		}

		virtual void emit(arg1_type a1, arg2_type a2)
		{
			(m_pobject->*m_pmemfun)(a1, a2);
		}

		virtual has_slots_interface* getdest() const
		{
			return m_pobject;
		}

	private:
		dest_type* m_pobject;
		void (dest_type::* m_pmemfun)(arg1_type, arg2_type);
	};

	template<class dest_type, class arg1_type, class arg2_type, class arg3_type, class mt_policy>
	class _connection3 : public _connection_base3<arg1_type, arg2_type, arg3_type, mt_policy>
	{
	public:
		_connection3()
		{
			m_pobject = NULL;
			m_pmemfun = NULL;
		}

		_connection3(dest_type* pobject, void (dest_type::*pmemfun)(arg1_type,
			arg2_type, arg3_type))
		{
			m_pobject = pobject;
			m_pmemfun = pmemfun;
		}

		virtual ~_connection3()
		{
		}

		virtual _connection_base3<arg1_type, arg2_type, arg3_type, mt_policy>* clone()
		{
			return new _connection3<dest_type, arg1_type, arg2_type, arg3_type, mt_policy>(*this);
		}

		virtual _connection_base3<arg1_type, arg2_type, arg3_type, mt_policy>* duplicate(has_slots_interface* pnewdest)
		{
			return new _connection3<dest_type, arg1_type, arg2_type, arg3_type, mt_policy>((dest_type *)pnewdest, m_pmemfun);
		}

		virtual void emit(arg1_type a1, arg2_type a2, arg3_type a3)
		{
			(m_pobject->*m_pmemfun)(a1, a2, a3);
		}

		virtual has_slots_interface* getdest() const
		{
			return m_pobject;
		}

	private:
		dest_type* m_pobject;
		void (dest_type::* m_pmemfun)(arg1_type, arg2_type, arg3_type);
	};

	template<class dest_type, class arg1_type, class arg2_type, class arg3_type,
		class arg4_type, class mt_policy>
		class _connection4 : public _connection_base4<arg1_type, arg2_type,
		arg3_type, arg4_type, mt_policy>
	{
	public:
		_connection4()
		{
			m_pobject = NULL;
			m_pmemfun = NULL;
		}

		_connection4(dest_type* pobject, void (dest_type::*pmemfun)(arg1_type,
			arg2_type, arg3_type, arg4_type))
		{
			m_pobject = pobject;
			m_pmemfun = pmemfun;
		}

		virtual ~_connection4()
		{
		}

		virtual _connection_base4<arg1_type, arg2_type, arg3_type, arg4_type, mt_policy>* clone()
		{
			return new _connection4<dest_type, arg1_type, arg2_type, arg3_type, arg4_type, mt_policy>(*this);
		}

		virtual _connection_base4<arg1_type, arg2_type, arg3_type, arg4_type, mt_policy>* duplicate(has_slots_interface* pnewdest)
		{
			return new _connection4<dest_type, arg1_type, arg2_type, arg3_type, arg4_type, mt_policy>((dest_type *)pnewdest, m_pmemfun);
		}

		virtual void emit(arg1_type a1, arg2_type a2, arg3_type a3,
			arg4_type a4)
		{
			(m_pobject->*m_pmemfun)(a1, a2, a3, a4);
		}

		virtual has_slots_interface* getdest() const
		{
			return m_pobject;
		}

	private:
		dest_type* m_pobject;
		void (dest_type::* m_pmemfun)(arg1_type, arg2_type, arg3_type,
			arg4_type);
	};

	template<class dest_type, class arg1_type, class arg2_type, class arg3_type,
		class arg4_type, class arg5_type, class mt_policy>
		class _connection5 : public _connection_base5<arg1_type, arg2_type,
		arg3_type, arg4_type, arg5_type, mt_policy>
	{
	public:
		_connection5()
		{
			m_pobject = NULL;
			m_pmemfun = NULL;
		}

		_connection5(dest_type* pobject, void (dest_type::*pmemfun)(arg1_type,
			arg2_type, arg3_type, arg4_type, arg5_type))
		{
			m_pobject = pobject;
			m_pmemfun = pmemfun;
		}

		virtual ~_connection5()
		{
		}

		virtual _connection_base5<arg1_type, arg2_type, arg3_type, arg4_type,
			arg5_type, mt_policy>* clone()
		{
			return new _connection5<dest_type, arg1_type, arg2_type, arg3_type, arg4_type,
				arg5_type, mt_policy>(*this);
		}

		virtual _connection_base5<arg1_type, arg2_type, arg3_type, arg4_type,
			arg5_type, mt_policy>* duplicate(has_slots_interface* pnewdest)
		{
			return new _connection5<dest_type, arg1_type, arg2_type, arg3_type, arg4_type,
				arg5_type, mt_policy>((dest_type *)pnewdest, m_pmemfun);
		}

		virtual void emit(arg1_type a1, arg2_type a2, arg3_type a3, arg4_type a4,
			arg5_type a5)
		{
			(m_pobject->*m_pmemfun)(a1, a2, a3, a4, a5);
		}

		virtual has_slots_interface* getdest() const
		{
			return m_pobject;
		}

	private:
		dest_type* m_pobject;
		void (dest_type::* m_pmemfun)(arg1_type, arg2_type, arg3_type, arg4_type,
			arg5_type);
	};

	template<class dest_type, class arg1_type, class arg2_type, class arg3_type,
		class arg4_type, class arg5_type, class arg6_type, class mt_policy>
		class _connection6 : public _connection_base6<arg1_type, arg2_type,
		arg3_type, arg4_type, arg5_type, arg6_type, mt_policy>
	{
	public:
		_connection6()
		{
			m_pobject = NULL;
			m_pmemfun = NULL;
		}

		_connection6(dest_type* pobject, void (dest_type::*pmemfun)(arg1_type,
			arg2_type, arg3_type, arg4_type, arg5_type, arg6_type))
		{
			m_pobject = pobject;
			m_pmemfun = pmemfun;
		}

		virtual ~_connection6()
		{
		}

		virtual _connection_base6<arg1_type, arg2_type, arg3_type, arg4_type,
			arg5_type, arg6_type, mt_policy>* clone()
		{
			return new _connection6<dest_type, arg1_type, arg2_type, arg3_type, arg4_type,
				arg5_type, arg6_type, mt_policy>(*this);
		}

		virtual _connection_base6<arg1_type, arg2_type, arg3_type, arg4_type,
			arg5_type, arg6_type, mt_policy>* duplicate(has_slots_interface* pnewdest)
		{
			return new _connection6<dest_type, arg1_type, arg2_type, arg3_type, arg4_type,
				arg5_type, arg6_type, mt_policy>((dest_type *)pnewdest, m_pmemfun);
		}

		virtual void emit(arg1_type a1, arg2_type a2, arg3_type a3, arg4_type a4,
			arg5_type a5, arg6_type a6)
		{
			(m_pobject->*m_pmemfun)(a1, a2, a3, a4, a5, a6);
		}

		virtual has_slots_interface* getdest() const
		{
			return m_pobject;
		}

	private:
		dest_type* m_pobject;
		void (dest_type::* m_pmemfun)(arg1_type, arg2_type, arg3_type, arg4_type,
			arg5_type, arg6_type);
	};

	template<class dest_type, class arg1_type, class arg2_type, class arg3_type,
		class arg4_type, class arg5_type, class arg6_type, class arg7_type, class mt_policy>
		class _connection7 : public _connection_base7<arg1_type, arg2_type,
		arg3_type, arg4_type, arg5_type, arg6_type, arg7_type, mt_policy>
	{
	public:
		_connection7()
		{
			m_pobject = NULL;
			m_pmemfun = NULL;
		}

		_connection7(dest_type* pobject, void (dest_type::*pmemfun)(arg1_type,
			arg2_type, arg3_type, arg4_type, arg5_type, arg6_type, arg7_type))
		{
			m_pobject = pobject;
			m_pmemfun = pmemfun;
		}

		virtual ~_connection7()
		{
		}

		virtual _connection_base7<arg1_type, arg2_type, arg3_type, arg4_type,
			arg5_type, arg6_type, arg7_type, mt_policy>* clone()
		{
			return new _connection7<dest_type, arg1_type, arg2_type, arg3_type, arg4_type,
				arg5_type, arg6_type, arg7_type, mt_policy>(*this);
		}

		virtual _connection_base7<arg1_type, arg2_type, arg3_type, arg4_type,
			arg5_type, arg6_type, arg7_type, mt_policy>* duplicate(has_slots_interface* pnewdest)
		{
			return new _connection7<dest_type, arg1_type, arg2_type, arg3_type, arg4_type,
				arg5_type, arg6_type, arg7_type, mt_policy>((dest_type *)pnewdest, m_pmemfun);
		}

		virtual void emit(arg1_type a1, arg2_type a2, arg3_type a3, arg4_type a4,
			arg5_type a5, arg6_type a6, arg7_type a7)
		{
			(m_pobject->*m_pmemfun)(a1, a2, a3, a4, a5, a6, a7);
		}

		virtual has_slots_interface* getdest() const
		{
			return m_pobject;
		}

	private:
		dest_type* m_pobject;
		void (dest_type::* m_pmemfun)(arg1_type, arg2_type, arg3_type, arg4_type,
			arg5_type, arg6_type, arg7_type);
	};

	template<class dest_type, class arg1_type, class arg2_type, class arg3_type,
		class arg4_type, class arg5_type, class arg6_type, class arg7_type,
		class arg8_type, class mt_policy>
		class _connection8 : public _connection_base8<arg1_type, arg2_type,
		arg3_type, arg4_type, arg5_type, arg6_type, arg7_type, arg8_type, mt_policy>
	{
	public:
		_connection8()
		{
			m_pobject = NULL;
			m_pmemfun = NULL;
		}

		_connection8(dest_type* pobject, void (dest_type::*pmemfun)(arg1_type,
			arg2_type, arg3_type, arg4_type, arg5_type, arg6_type,
			arg7_type, arg8_type))
		{
			m_pobject = pobject;
			m_pmemfun = pmemfun;
		}

		virtual ~_connection8()
		{
		}

		virtual _connection_base8<arg1_type, arg2_type, arg3_type, arg4_type,
			arg5_type, arg6_type, arg7_type, arg8_type, mt_policy>* clone()
		{
			return new _connection8<dest_type, arg1_type, arg2_type, arg3_type, arg4_type,
				arg5_type, arg6_type, arg7_type, arg8_type, mt_policy>(*this);
		}

		virtual _connection_base8<arg1_type, arg2_type, arg3_type, arg4_type,
			arg5_type, arg6_type, arg7_type, arg8_type, mt_policy>* duplicate(has_slots_interface* pnewdest)
		{
			return new _connection8<dest_type, arg1_type, arg2_type, arg3_type, arg4_type,
				arg5_type, arg6_type, arg7_type, arg8_type, mt_policy>((dest_type *)pnewdest, m_pmemfun);
		}

		virtual void emit(arg1_type a1, arg2_type a2, arg3_type a3, arg4_type a4,
			arg5_type a5, arg6_type a6, arg7_type a7, arg8_type a8)
		{
			(m_pobject->*m_pmemfun)(a1, a2, a3, a4, a5, a6, a7, a8);
		}

		virtual has_slots_interface* getdest() const
		{
			return m_pobject;
		}

	private:
		dest_type* m_pobject;
		void (dest_type::* m_pmemfun)(arg1_type, arg2_type, arg3_type, arg4_type,
			arg5_type, arg6_type, arg7_type, arg8_type);
	};

	template<class mt_policy = SIGSLOT_DEFAULT_MT_POLICY>
	class signal0 : public _signal_base0<mt_policy>
	{
	public:
		typedef _signal_base0<mt_policy> base;
		typedef typename base::connections_list connections_list;
		using base::m_connected_slots;

		signal0()
		{
			;
		}

		signal0(const signal0<mt_policy>& s)
			: _signal_base0<mt_policy>(s)
		{
			;
		}

		template<class desttype>
		void connect(desttype* pclass, void (desttype::*pmemfun)())
		{
			lock_block<mt_policy> lock(this);
			_connection0<desttype, mt_policy>* conn =
				new _connection0<desttype, mt_policy>(pclass, pmemfun);
			m_connected_slots.push_back(conn);
			pclass->signal_connect(this);
		}

		void emit()
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::const_iterator itNext, it = m_connected_slots.begin();
			typename connections_list::const_iterator itEnd = m_connected_slots.end();

			while (it != itEnd)
			{
				itNext = it;
				++itNext;

				(*it)->emit();

				it = itNext;
			}
		}

		void operator()()
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::const_iterator itNext, it = m_connected_slots.begin();
			typename connections_list::const_iterator itEnd = m_connected_slots.end();

			while (it != itEnd)
			{
				itNext = it;
				++itNext;

				(*it)->emit();

				it = itNext;
			}
		}
	};

	template<class arg1_type, class mt_policy = SIGSLOT_DEFAULT_MT_POLICY>
	class signal1 : public _signal_base1<arg1_type, mt_policy>
	{
	public:
		typedef _signal_base1<arg1_type, mt_policy> base;
		typedef typename base::connections_list connections_list;
		using base::m_connected_slots;

		signal1()
		{
			;
		}

		signal1(const signal1<arg1_type, mt_policy>& s)
			: _signal_base1<arg1_type, mt_policy>(s)
		{
			;
		}

		template<class desttype>
		void connect(desttype* pclass, void (desttype::*pmemfun)(arg1_type))
		{
			lock_block<mt_policy> lock(this);
			_connection1<desttype, arg1_type, mt_policy>* conn =
				new _connection1<desttype, arg1_type, mt_policy>(pclass, pmemfun);
			m_connected_slots.push_back(conn);
			pclass->signal_connect(this);
		}

		void emit(arg1_type a1)
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::const_iterator itNext, it = m_connected_slots.begin();
			typename connections_list::const_iterator itEnd = m_connected_slots.end();

			while (it != itEnd)
			{
				itNext = it;
				++itNext;

				(*it)->emit(a1);

				it = itNext;
			}
		}

		void operator()(arg1_type a1)
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::const_iterator itNext, it = m_connected_slots.begin();
			typename connections_list::const_iterator itEnd = m_connected_slots.end();

			while (it != itEnd)
			{
				itNext = it;
				++itNext;

				(*it)->emit(a1);

				it = itNext;
			}
		}
	};

	template<class arg1_type, class arg2_type, class mt_policy = SIGSLOT_DEFAULT_MT_POLICY>
	class signal2 : public _signal_base2<arg1_type, arg2_type, mt_policy>
	{
	public:
		typedef _signal_base2<arg1_type, arg2_type, mt_policy> base;
		typedef typename base::connections_list connections_list;
		using base::m_connected_slots;

		signal2()
		{
			;
		}

		signal2(const signal2<arg1_type, arg2_type, mt_policy>& s)
			: _signal_base2<arg1_type, arg2_type, mt_policy>(s)
		{
			;
		}

		template<class desttype>
		void connect(desttype* pclass, void (desttype::*pmemfun)(arg1_type,
			arg2_type))
		{
			lock_block<mt_policy> lock(this);
			_connection2<desttype, arg1_type, arg2_type, mt_policy>* conn = new
				_connection2<desttype, arg1_type, arg2_type, mt_policy>(pclass, pmemfun);
			m_connected_slots.push_back(conn);
			pclass->signal_connect(this);
		}

		void emit(arg1_type a1, arg2_type a2)
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::const_iterator itNext, it = m_connected_slots.begin();
			typename connections_list::const_iterator itEnd = m_connected_slots.end();

			while (it != itEnd)
			{
				itNext = it;
				++itNext;

				(*it)->emit(a1, a2);

				it = itNext;
			}
		}

		void operator()(arg1_type a1, arg2_type a2)
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::const_iterator itNext, it = m_connected_slots.begin();
			typename connections_list::const_iterator itEnd = m_connected_slots.end();

			while (it != itEnd)
			{
				itNext = it;
				++itNext;

				(*it)->emit(a1, a2);

				it = itNext;
			}
		}
	};

	template<class arg1_type, class arg2_type, class arg3_type, class mt_policy = SIGSLOT_DEFAULT_MT_POLICY>
	class signal3 : public _signal_base3<arg1_type, arg2_type, arg3_type, mt_policy>
	{
	public:
		typedef _signal_base3<arg1_type, arg2_type, arg3_type, mt_policy> base;
		typedef typename base::connections_list connections_list;
		using base::m_connected_slots;

		signal3()
		{
			;
		}

		signal3(const signal3<arg1_type, arg2_type, arg3_type, mt_policy>& s)
			: _signal_base3<arg1_type, arg2_type, arg3_type, mt_policy>(s)
		{
			;
		}

		template<class desttype>
		void connect(desttype* pclass, void (desttype::*pmemfun)(arg1_type,
			arg2_type, arg3_type))
		{
			lock_block<mt_policy> lock(this);
			_connection3<desttype, arg1_type, arg2_type, arg3_type, mt_policy>* conn =
				new _connection3<desttype, arg1_type, arg2_type, arg3_type, mt_policy>(pclass,
					pmemfun);
			m_connected_slots.push_back(conn);
			pclass->signal_connect(this);
		}

		void emit(arg1_type a1, arg2_type a2, arg3_type a3)
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::const_iterator itNext, it = m_connected_slots.begin();
			typename connections_list::const_iterator itEnd = m_connected_slots.end();

			while (it != itEnd)
			{
				itNext = it;
				++itNext;

				(*it)->emit(a1, a2, a3);

				it = itNext;
			}
		}

		void operator()(arg1_type a1, arg2_type a2, arg3_type a3)
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::const_iterator itNext, it = m_connected_slots.begin();
			typename connections_list::const_iterator itEnd = m_connected_slots.end();

			while (it != itEnd)
			{
				itNext = it;
				++itNext;

				(*it)->emit(a1, a2, a3);

				it = itNext;
			}
		}
	};

	template<class arg1_type, class arg2_type, class arg3_type, class arg4_type, class mt_policy = SIGSLOT_DEFAULT_MT_POLICY>
	class signal4 : public _signal_base4<arg1_type, arg2_type, arg3_type,
		arg4_type, mt_policy>
	{
	public:
		typedef _signal_base4<arg1_type, arg2_type, arg3_type, arg4_type, mt_policy> base;
		typedef typename base::connections_list connections_list;
		using base::m_connected_slots;

		signal4()
		{
			;
		}

		signal4(const signal4<arg1_type, arg2_type, arg3_type, arg4_type, mt_policy>& s)
			: _signal_base4<arg1_type, arg2_type, arg3_type, arg4_type, mt_policy>(s)
		{
			;
		}

		template<class desttype>
		void connect(desttype* pclass, void (desttype::*pmemfun)(arg1_type,
			arg2_type, arg3_type, arg4_type))
		{
			lock_block<mt_policy> lock(this);
			_connection4<desttype, arg1_type, arg2_type, arg3_type, arg4_type, mt_policy>*
				conn = new _connection4<desttype, arg1_type, arg2_type, arg3_type,
				arg4_type, mt_policy>(pclass, pmemfun);
			m_connected_slots.push_back(conn);
			pclass->signal_connect(this);
		}

		void emit(arg1_type a1, arg2_type a2, arg3_type a3, arg4_type a4)
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::const_iterator itNext, it = m_connected_slots.begin();
			typename connections_list::const_iterator itEnd = m_connected_slots.end();

			while (it != itEnd)
			{
				itNext = it;
				++itNext;

				(*it)->emit(a1, a2, a3, a4);

				it = itNext;
			}
		}

		void operator()(arg1_type a1, arg2_type a2, arg3_type a3, arg4_type a4)
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::const_iterator itNext, it = m_connected_slots.begin();
			typename connections_list::const_iterator itEnd = m_connected_slots.end();

			while (it != itEnd)
			{
				itNext = it;
				++itNext;

				(*it)->emit(a1, a2, a3, a4);

				it = itNext;
			}
		}
	};

	template<class arg1_type, class arg2_type, class arg3_type, class arg4_type,
		class arg5_type, class mt_policy = SIGSLOT_DEFAULT_MT_POLICY>
		class signal5 : public _signal_base5<arg1_type, arg2_type, arg3_type,
		arg4_type, arg5_type, mt_policy>
	{
	public:
		typedef _signal_base5<arg1_type, arg2_type, arg3_type, arg4_type, arg5_type, mt_policy> base;
		typedef typename base::connections_list connections_list;
		using base::m_connected_slots;

		signal5()
		{
			;
		}

		signal5(const signal5<arg1_type, arg2_type, arg3_type, arg4_type,
			arg5_type, mt_policy>& s)
			: _signal_base5<arg1_type, arg2_type, arg3_type, arg4_type,
			arg5_type, mt_policy>(s)
		{
			;
		}

		template<class desttype>
		void connect(desttype* pclass, void (desttype::*pmemfun)(arg1_type,
			arg2_type, arg3_type, arg4_type, arg5_type))
		{
			lock_block<mt_policy> lock(this);
			_connection5<desttype, arg1_type, arg2_type, arg3_type, arg4_type,
				arg5_type, mt_policy>* conn = new _connection5<desttype, arg1_type, arg2_type,
				arg3_type, arg4_type, arg5_type, mt_policy>(pclass, pmemfun);
			m_connected_slots.push_back(conn);
			pclass->signal_connect(this);
		}

		void emit(arg1_type a1, arg2_type a2, arg3_type a3, arg4_type a4,
			arg5_type a5)
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::const_iterator itNext, it = m_connected_slots.begin();
			typename connections_list::const_iterator itEnd = m_connected_slots.end();

			while (it != itEnd)
			{
				itNext = it;
				++itNext;

				(*it)->emit(a1, a2, a3, a4, a5);

				it = itNext;
			}
		}

		void operator()(arg1_type a1, arg2_type a2, arg3_type a3, arg4_type a4,
			arg5_type a5)
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::const_iterator itNext, it = m_connected_slots.begin();
			typename connections_list::const_iterator itEnd = m_connected_slots.end();

			while (it != itEnd)
			{
				itNext = it;
				++itNext;

				(*it)->emit(a1, a2, a3, a4, a5);

				it = itNext;
			}
		}
	};


	template<class arg1_type, class arg2_type, class arg3_type, class arg4_type,
		class arg5_type, class arg6_type, class mt_policy = SIGSLOT_DEFAULT_MT_POLICY>
		class signal6 : public _signal_base6<arg1_type, arg2_type, arg3_type,
		arg4_type, arg5_type, arg6_type, mt_policy>
	{
	public:
		typedef _signal_base6<arg1_type, arg2_type, arg3_type, arg4_type, arg5_type, arg6_type, mt_policy> base;
		typedef typename base::connections_list connections_list;
		using base::m_connected_slots;

		signal6()
		{
			;
		}

		signal6(const signal6<arg1_type, arg2_type, arg3_type, arg4_type,
			arg5_type, arg6_type, mt_policy>& s)
			: _signal_base6<arg1_type, arg2_type, arg3_type, arg4_type,
			arg5_type, arg6_type, mt_policy>(s)
		{
			;
		}

		template<class desttype>
		void connect(desttype* pclass, void (desttype::*pmemfun)(arg1_type,
			arg2_type, arg3_type, arg4_type, arg5_type, arg6_type))
		{
			lock_block<mt_policy> lock(this);
			_connection6<desttype, arg1_type, arg2_type, arg3_type, arg4_type,
				arg5_type, arg6_type, mt_policy>* conn =
				new _connection6<desttype, arg1_type, arg2_type, arg3_type,
				arg4_type, arg5_type, arg6_type, mt_policy>(pclass, pmemfun);
			m_connected_slots.push_back(conn);
			pclass->signal_connect(this);
		}

		void emit(arg1_type a1, arg2_type a2, arg3_type a3, arg4_type a4,
			arg5_type a5, arg6_type a6)
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::const_iterator itNext, it = m_connected_slots.begin();
			typename connections_list::const_iterator itEnd = m_connected_slots.end();

			while (it != itEnd)
			{
				itNext = it;
				++itNext;

				(*it)->emit(a1, a2, a3, a4, a5, a6);

				it = itNext;
			}
		}

		void operator()(arg1_type a1, arg2_type a2, arg3_type a3, arg4_type a4,
			arg5_type a5, arg6_type a6)
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::const_iterator itNext, it = m_connected_slots.begin();
			typename connections_list::const_iterator itEnd = m_connected_slots.end();

			while (it != itEnd)
			{
				itNext = it;
				++itNext;

				(*it)->emit(a1, a2, a3, a4, a5, a6);

				it = itNext;
			}
		}
	};

	template<class arg1_type, class arg2_type, class arg3_type, class arg4_type,
		class arg5_type, class arg6_type, class arg7_type, class mt_policy = SIGSLOT_DEFAULT_MT_POLICY>
		class signal7 : public _signal_base7<arg1_type, arg2_type, arg3_type,
		arg4_type, arg5_type, arg6_type, arg7_type, mt_policy>
	{
	public:
		typedef _signal_base7<arg1_type, arg2_type, arg3_type, arg4_type,
			arg5_type, arg6_type, arg7_type, mt_policy> base;
		typedef typename base::connections_list connections_list;
		using base::m_connected_slots;

		signal7()
		{
			;
		}

		signal7(const signal7<arg1_type, arg2_type, arg3_type, arg4_type,
			arg5_type, arg6_type, arg7_type, mt_policy>& s)
			: _signal_base7<arg1_type, arg2_type, arg3_type, arg4_type,
			arg5_type, arg6_type, arg7_type, mt_policy>(s)
		{
			;
		}

		template<class desttype>
		void connect(desttype* pclass, void (desttype::*pmemfun)(arg1_type,
			arg2_type, arg3_type, arg4_type, arg5_type, arg6_type,
			arg7_type))
		{
			lock_block<mt_policy> lock(this);
			_connection7<desttype, arg1_type, arg2_type, arg3_type, arg4_type,
				arg5_type, arg6_type, arg7_type, mt_policy>* conn =
				new _connection7<desttype, arg1_type, arg2_type, arg3_type,
				arg4_type, arg5_type, arg6_type, arg7_type, mt_policy>(pclass, pmemfun);
			m_connected_slots.push_back(conn);
			pclass->signal_connect(this);
		}

		void emit(arg1_type a1, arg2_type a2, arg3_type a3, arg4_type a4,
			arg5_type a5, arg6_type a6, arg7_type a7)
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::const_iterator itNext, it = m_connected_slots.begin();
			typename connections_list::const_iterator itEnd = m_connected_slots.end();

			while (it != itEnd)
			{
				itNext = it;
				++itNext;

				(*it)->emit(a1, a2, a3, a4, a5, a6, a7);

				it = itNext;
			}
		}

		void operator()(arg1_type a1, arg2_type a2, arg3_type a3, arg4_type a4,
			arg5_type a5, arg6_type a6, arg7_type a7)
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::const_iterator itNext, it = m_connected_slots.begin();
			typename connections_list::const_iterator itEnd = m_connected_slots.end();

			while (it != itEnd)
			{
				itNext = it;
				++itNext;

				(*it)->emit(a1, a2, a3, a4, a5, a6, a7);

				it = itNext;
			}
		}
	};

	template<class arg1_type, class arg2_type, class arg3_type, class arg4_type,
		class arg5_type, class arg6_type, class arg7_type, class arg8_type, class mt_policy = SIGSLOT_DEFAULT_MT_POLICY>
		class signal8 : public _signal_base8<arg1_type, arg2_type, arg3_type,
		arg4_type, arg5_type, arg6_type, arg7_type, arg8_type, mt_policy>
	{
	public:
		typedef _signal_base8<arg1_type, arg2_type, arg3_type, arg4_type,
			arg5_type, arg6_type, arg7_type, arg8_type, mt_policy> base;
		typedef typename base::connections_list connections_list;
		using base::m_connected_slots;

		signal8()
		{
			;
		}

		signal8(const signal8<arg1_type, arg2_type, arg3_type, arg4_type,
			arg5_type, arg6_type, arg7_type, arg8_type, mt_policy>& s)
			: _signal_base8<arg1_type, arg2_type, arg3_type, arg4_type,
			arg5_type, arg6_type, arg7_type, arg8_type, mt_policy>(s)
		{
			;
		}

		template<class desttype>
		void connect(desttype* pclass, void (desttype::*pmemfun)(arg1_type,
			arg2_type, arg3_type, arg4_type, arg5_type, arg6_type,
			arg7_type, arg8_type))
		{
			lock_block<mt_policy> lock(this);
			_connection8<desttype, arg1_type, arg2_type, arg3_type, arg4_type,
				arg5_type, arg6_type, arg7_type, arg8_type, mt_policy>* conn =
				new _connection8<desttype, arg1_type, arg2_type, arg3_type,
				arg4_type, arg5_type, arg6_type, arg7_type,
				arg8_type, mt_policy>(pclass, pmemfun);
			m_connected_slots.push_back(conn);
			pclass->signal_connect(this);
		}

		void emit(arg1_type a1, arg2_type a2, arg3_type a3, arg4_type a4,
			arg5_type a5, arg6_type a6, arg7_type a7, arg8_type a8)
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::const_iterator itNext, it = m_connected_slots.begin();
			typename connections_list::const_iterator itEnd = m_connected_slots.end();

			while (it != itEnd)
			{
				itNext = it;
				++itNext;

				(*it)->emit(a1, a2, a3, a4, a5, a6, a7, a8);

				it = itNext;
			}
		}

		void operator()(arg1_type a1, arg2_type a2, arg3_type a3, arg4_type a4,
			arg5_type a5, arg6_type a6, arg7_type a7, arg8_type a8)
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::const_iterator itNext, it = m_connected_slots.begin();
			typename connections_list::const_iterator itEnd = m_connected_slots.end();

			while (it != itEnd)
			{
				itNext = it;
				++itNext;

				(*it)->emit(a1, a2, a3, a4, a5, a6, a7, a8);

				it = itNext;
			}
		}
	};

}; // namespace sigslot

#endif // _SIGSLOT_H__s
posted @ 2020-09-23 12:53  mohist  阅读(743)  评论(0编辑  收藏  举报